Modeling the Grid — Breakthrough

To start the new year off with a bang, I may be going out on a limb here, but I don’t think so. I hope you’ll take a close look at this….

DOE, EPRI and the entire power industry is abuzz with talk about how the grid can be operated better. The grand vision comes up hard against the incredibly difficult problem of modeling. For many decades, the best mathematicians, operations researchers, utility engineers and others have struggled to come up with (computerized) representations of the grid that can guide planners and operators.

Since the beginning, despite ever faster-cheaper computers, and tremendous innovations in algorithms and computational methods, the state of the art has been forced to make many bad compromises among such factors as speed, accuracy, detail, breadth, time domain, treatment of boundary effects, and applications. Unless corners are cut, a solution might not be found at all (i.e. converge). Areas of study and tools are stove-piped into many separate categories of time-scale and function:

– Real time (sec. to minutes)
optimal power flow, voltage and frequency control, contingency analysis

– Short term (hours to a week)
unit commitment, thermal-hydro coordination

– Annual ( 1-3 years)
maintenance scheduling, rate-design, production costing, hydro scheduling…

– Long term (3-40 years)
generations expansion, transmission planning, etc.

(see "A Primer on Electric Power Flow for Economists and Utility Planners" EPRI TR-104604, Feb 1995.)

To make things worse, the industry is highly fragmented and way behind the curve. Utilities don’t have the same cadre of experts in-house that they used to. Vendors sell "black-box" solutions that don’t live up to promises. Obsolete tools continue to be used because "everybody else uses them" and "regulators accept them". (Never mind the results may be worthless.) A guru of power flow analysis, now retired, told me that much of the industry isn’t even using more powerful real time analysis tools that are over 25 years old.

So there are major institutional problems and technical ones, and the two are intertwined. Not only is the problem fiendishly hard, but lot of people also have vested interests in the status quo (e.g., experts have devoted entire careers, and don’t look kindly at upstart claims of a breakthrough–just as in every field of human endeavor).


This is a long prologue to a story of just such a claimed breakthrough. Optimal Technologies appeared on the scene late in 2001, announcing they had analyzed the June 14, 2000 California blackout, and stating they could have prevented it by fine-tuning the grid according to results from their analysis tool, AEMPFAST.

Needless to say, the world was not especially open to the idea that a newcomer had succeeded in coming up with a methodology that did what so many had sought for so long:

"AEMPFAST is based on a new near-real-time (solves a several thousand bus system in milliseconds) mathematical approach to network analysis, optimization, ranking, and prediction called QuixFlow … a proprietary N-Dimensional (non-linear) analysis, optimization, and ranking engine that also has defendable predictive capabilities and is applicable to any problem that can be modeled as a network. … QuixFlow uses no approximations; it handles multiple objectives; and is able to enforce multi-objective inequality constraints." [from factsheet – see link below]

I have been closely following the company’s progress since then. Their revolutionary claims are finally beginning to overcome the natural skepticism and resistance. At least one major ISO/RTO is signing up, and DOE and a number of large utilities are taking it very seriously. The implications are, as Donald Trump would say, "huge".
Here is an introduction in the company’s own words:

Optimal Technologies is a private company focused on making power-grid systems more efficient, more reliable, and more cost effective to plan and operate. In other words, "smarter". Think of Optimal as the Internet for power grids [or Sonet for telecommunications] self-healing, self-enabling, lowest cost operation with highest reliability.

Problem: Power system infrastructures and the grid networks that support them are breaking down faster than solutions can be developed to address the underlying problems.

Because of inadequate core technologies and especially slow and limited mathematical tools, the utility industry is plagued with many tools based on algorithms that no longer work well for their intended tasks and that do not work well together. Last year’s blackout that effected more than 50 million people should help provide some context. Despite new advances in materials and hardware, blackouts and brownouts are becoming larger and more common because utility system planning and control methods are still in the horse and buggy era — done much as they were 50 years ago — fragmented and piecemealed. In other words, even though system peripherals (such as wind energy, distributed gas generation, fuel cell generators, meters, and demand-side management) are improving, the core grid Operating System that makes them all work well together doesn’t exist.

New Technology: Our software and hardware solutions are based on a revolutionary new mathematical approach to network analysis, optimization, and management. Our technology is far better than current approaches to understanding and managing networks, and allows for both local and integrated, end-to-end views of Generation, Transmission, Distribution and Load. Unlike competing products, our technology can view the complete energy delivery supply chain as an integrated asset, which allows for entirely new levels of risk review and risk management — previously not possible. Optimal’s new technology should be viewed as "Foundational" in that it has pervasive application within the power industry and provides a common framework for many new tools.

Optimal’s Solution: Think of us as the much needed underlying "operating system engine" that integrates, defragments, and prioritizes utility planning, operations, and business processes in the best controllable and defendable way. Our technologies have the ability to simultaneously analyze, optimize, and manage generation, transmission, distribution and customer load Ð down to the individual power line and building. Instead of viewing customer load as a problem, our technology has the ability to make all aspects of the system, including customer load, potential risk-reducing resources [i.e. reliability enhancers] not otherwise possible.

Products: Applications include: Congestion Management, Locational Marginal Pricing, Simultaneous Transfer Limits, Multi-Dimensional Reliability, Automated Network Planning, Emergency Control, System Restoration, and Smart Asset Management.

Beyond the scope of this note, Optimal also has a suite of software and hardware for the demand side, which enables measurement and control — and optimization — down to individual loads.
There is a great deal of information on the company’s website:

Roland Schoettle, CEO
Optimal Technologies International Inc. 707 557-1788

AEMPFAST FACTSHEET (good starting point)

Superconducting Fault Current Limiter

Australians quietly develop something completely different.

A "fault" in a transmission or distribution circuit is nasty business. Circuit breakers open up, and that not only interrupts service to a lot of customers, it can also put a surge on the system. Worse, most fault clear themselves almost immediately, and then a decision has to be made, either by a person or by the equipment, whether and when to reclose the breaker. This is rough on the system, and the breakers themselves are expensive and hard to maintain.

A Fault Current Limiter (FCL) is a subtler way of dealing with momentary faults. It recognizes a sudden high current that’s not supposed to happen; it "inserts" a high impedance in the line momentarily to block that current, and returns to normal once the situation corrects itself. This is not an easy task, however. Currently (no pun), FCLs are far from ideal. Air core reactors using metallic copper conductors incur high operational losses, have limited response time, and wear out easily. What’s more, the breakers usually trip anyhow.

It’s long been recognized that FCLs are a great application for high temperature superconductors (HTSC). In fact, it’s seen as the first and best application of HTSCs on the power system. The basic idea is to put a superconducting element in the circuit in such a way that if too high a current comes along, the element goes "normal" or momentarily stops being a superconductor. This supplies the temporary high impedance to limit the current, and once the current drops, the superconductor goes back to being a superconductor and lets the current can flow again. This happens almost instantaneously, faster than a mechanical switch, and with "softer" transitions.

A SC FCL could thus detect abnormally high current transients in the grid, e.g. from lightning strikes, in a fraction of a cycle, and control the fault current so that system equipment can absorb it safely, protecting valuable downstream infrastructure.

Superconductors go "normal" if the temperature gets too high, or if the magnetic field gets too high. A SC FCL relies on the latter type of "quenching". The base current passing through the device produces a magnetic field below the level that would turn off the SC — a fault current will increase the magnetic field enough to do the trick.

SC FCLs are the subject of intense R&D efforts worldwide. ABB installed a prototype at a substation in Switzerland in 1997. The DOE is funding a new $12M program (, and EPRI is offering a major study (

A conference earlier this month presented the very latest on SC, including power applications. Note the three FCL sessions. Applied Superconductivity Conf, ASC 2004, Jacksonville, FL, October 3-8, 2004

Essentially all these efforts to date are using the bulk property of SC, and involve putting the entire load current through the SC itself, as described above. This leads to designs that are highly complex and which require a lot of SC material (i.e. very expensive wire or tape – which is proving difficult to make in large quantities). Moreover, none have progressed beyond the R&D stage and or early field beta trials. (Note – in most designs, a shunt actually supplies the impedance, not the quenched SC element, — even more complicated.)

Meanwhile, Down Under!

Meanwhile, a quiet development program in Australia has come up with a novel approach which has already been successfully demonstrated, and which is coming to North America. They developed their own SC tape and SC coils (and manufacturing method), and they invented and patented a 3-phase FCL that works in an entirely different way. It is actually more of a "controller" than a limiter of fault current.

It is a HTSC-enabled saturated magnetic core inductor. The load current passes through a copper coil on one side of a laminated-steel core. A DC coil on the other side maintains the core in a fully saturated state of magnetization. The number of copper turns are set so that a fault current in the AC coil will drive the iron core out of saturation (on the negative swing of the waveform). The coil then presents a large current controlled reactance, clipping the fault current at the design value.

All of this is explained in detail in a white paper presented in 2003, and which is available on request. Download 3.5 MB — (password required)
The design uses only a small amount of superconductor, simply to maintain the core magnetization (the only reason you need SC for this is that ordinary coils would be too big and lossy). More important, it works; it’s simple, robust, and versatile; and it will be available in a year at a reasonable price point. Key advantages include:

Superior Fault Condition Performance
– Very fast response time – protection functions activate in a fraction of a cycle.
– Large dynamic range – accommodates overloads without degradation and recovers instantly.
– Superior dynamic performance – suppresses initial transients more fully with much shorter decay times.
– Self-triggering/self-governing – operates instantly because of fundamental physical laws, no external sensing or controls required.

Low Cost
– Low operational cost – very little electrical losses in standby mode.
– High durability – very low cycle fatigue – operates through multiple operating cycles or fault events with little or no degradation.

– Expandable architecture – can be field or shop reconfigured to meet future requirements or changing grid characteristics.
– Small footprint and flexible form factor – compact to fit within space constraints and can be configured differently for local requirements.

Positive Grid Impact
– Improved grid reliability – clips fault currents completely without de-energizing the downstream grid.
– Transparency to the grid – no discernable impact during standby.

The technology has undergone substantial simulation, prototyping, and testing. The company sees no significant technical barriers and is on target to begin low-volume manufacturing and field installations of three-phase commercial units within 12 months.
The Australian company was recently acquired as a subsidiary of SC Power Systems, a US company, and operations have been moved to the US. They’ve already engaged in substantive dialogue with potential early customers and have validated the demand for its first three-phase units (15KV, nominally 10KAmps/phase).

They’ve contracted with NEETRAC (see UFTO Note 17Jan02) to prepare test procedures compatible with IEEE standards. NEETRAC member utilities are lining up to be the hosts for utility field tests scheduled for Q4, 2005. The company welcomes the opportunity to explore application needs, and will be taking orders as early as 2005.


Woody Gibson, 415-277-0179
SC Power Systems, Inc.
San Francisco, CA

The company is also raising equity funding. They presented at the NREL Industry Growth Forum, Oct. 18-20 in Orlando A business plan is available from the company.

CERTS Draft White Papers – Grid of the Future

Consortium for Electric Reliability Technology Solutions (CERTS)
Grid of the Future

White Papers — August 30, 1999

Prepared for the:
Transmission Reliability Program
Office of Power Technologies
Energy Efficiency and Renewable Energy, DOE

Attached are the six DRAFT white papers prepared for the CERTS program by the various participants (labs and others), which have been made available to UFTO for review and comment. These were presented at an invitational workshop last Friday Sept. 17. Apparently Hurricane Floyd dampened the attendance but not the enthusiasm.

Plans are to close the written comment period at the end of the month, finalize the white papers, and then use them to develop a multi-year research plan for DOE.

Comments should be directed to:
Joe Eto, LBNL, 510-486-7284,

(The six papers are together in a single zipped folder/directory. If you have trouble downloading or unzipping, I can supply them as word documents instead–total 2 MB)

1. scenario300899.doc

The Federal Role in Electric System Reliability RD&D During a Time of Industry Transition: An Application of Scenario Analysis; Joseph Eto, LBNL

2. integdr030999.doc

Interconnection and Controls for Reliable, Large Scale Integration of Distributed Energy Resources; Vikram Budhraja, Carlos Martinez, Jim Dyer, Mohan Kondragunta, Edison Technology Solutions

3. rcntevnt010999.doc

Review of Recent Reliability Issues and System Events;
John F. Hauer, Jeff E. Dagle, PNNL

4. bulkpowr070999.doc

Review of the Structure of Bulk Power Markets;
Brendan J. Kirby and John D. Kueck, ORNL

5. realtime300899.doc

Real-Time Security Monitoring and Control of Power Systems; G. Gross (UIUC), A. Bose (WSU), C. DeMarco (UWM), M. Pai (UIUC), J. Thorp (Cornell U) and P. Varaiya (UCB) PSERC

6. uncertai010999.doc

Accommodating Uncertainty in Planning and Operations;
M. Ivey, A. Akhil, D. Robinson, J. Stamp, K. Stamber, Sandia, K. Chu, PNNL


(Excerpt from:
UFTO Note – CERTS-New DOE Prog in Elec. Reliability, 01 Mar 1999)

FY 99 activities for DOE include work in five areas, the first of
which is:

“Grid of the Future”

The first year of a two year planning study to identify emerging gaps in reliability technology R&D. In the first year, CERTS will lay the groundwork for the development of a federal R&D roadmap by preparing six white papers, which will be the basis for industry-wide stakeholder workshops on:

(1) alternative scenarios for the future of the electric power system, including a detailed articulation of the technological assumptions underlying each of these futures;

(2) assessment of the technology and control R&D needs for widespread integration of distributed resources;

(3) recent reliability issues review, including in-depth analysis of technological and institutional aspects of recent reliability events (e.g., summer 1996 WSCC events; winter 1997 northeast ice storms; winter 1998 San Francisco outage, etc.);

(4) review and assessment of the current structure of U.S. bulk power markets and provision of reliability services (including 1998 price spikes in mid-west and west, and absence of meaningful opportunities for demand response);

(5) assessment of the technology and control R&D needs for real time system control;

(6) assessment of the treatment of uncertainty in planning and operational models.

Rel. TF Paper-Federalism in Transmission

Another paper from the DOE Reliability Task Force just arrived. I have then pdf file if you want it — should be posted shortly on the SEAB website.

| ** UFTO ** Edward Beardsworth ** Consultant
| 951 Lincoln Ave. tel 650-328-5670
| Palo Alto CA 94301-3041 fax 650-328-5675

Issues of Federalism in Transmission System Reliability
A Position paper of the
Electric System Reliability Task Force
Secretary of Energy Advisory Board
July 9, 1998

Our federal system shares institutional responsibility for ensuring North American grid reliability; this paper addresses the role of state and regional authorities. Our focus is issues of siting and non-federal price regulation that have significant reliability implications. We address both constraints and opportunities. We also acknowledge an important threshold issue: whether the grid itself retains natural monopoly features that justify a continuing government role in regulating the prices of grid services.

If, as some believe, grid construction and maintenance lack compelling natural monopoly characteristics, regulated systems of cost recovery may not long endure at state or other levels. Acknowledging this viewpoint, the Task Force nonetheless believes that this sector’s monopoly aspects remain robust enough to justify improving rather than dismantling price regulation. And we are concerned that state and federal regulation is not doing enough to promote and shape sound investments in grid reliability.1 We also support an increased role for regional institutions that can help states resolve issues that transcend their individual boundaries.

Our paper is organized in four sections below. In section I, we begin with a critical review of state and local responsibility for transmission siting and evaluation of transmission alternatives. In section II, we then explore state roles in cost recovery and incentives for transmission enhancements, including but not limited to new transmission. The third section addresses states’ participation in existing regional reliability organizations. The final section is a summary of the papers recommendations.

DOE Reliability TF paper on T&D

The Department of Energy’s Electric System Reliability Task Force has written a position paper, “Incentives for Transmission Enhancement”. The report indicates that a need exists for the construction of more power lines to relieve congestion, and that regulators should provide incentives for their construction. In the report, the Task Force reviews the nature of transmission and the challenges facing transmission companies in a deregulated electric industry. The report concludes that the main concern facing grid reliability is the need for stronger state and federal-level regulation to promote sound investments.

The report and earlier materials are available on line:

Electric System Reliability Task Force – Minutes and Reports

Ninth Meeting – Minutes from the ninth meeting (May 12, 1998).
Eighth Meeting – Minutes from the eighth meeting (March 10, 1998).
Seventh Meeting – Minutes from the seventh meeting (January 1998).
Sixth Meeting – Minutes from the sixth meeting (November 1997).
Fifth Meeting – Minutes from the fifth meeting (September 1997).
Fourth Meeting – Minutes from the fourth meeting (July 1997).
Third meeting – Minutes from the third meeting (June 1997).
Second meeting – Minutes from the second meeting (March 1997).
First meeting – Minutes from the first meeting (January 1997).

Incentives for Transmission Enhancement (in PDF) (August 1998)
Transmittal Letter to Walter Massey, Chairman of SEAB (in PDF)
Technical Issues in Transmission System Reliability (in PDF) (May
Transmittal Letter to Walter Massey, Chairman of SEAB (in PDF)
Ancillary Services and Bulk-Power Reliability (in PDF) (May 1998)
Transmittal Letter to Walter Massey, Chairman of SEAB (in PDF)
The Characteristics of the Independent System Operator (March 1998)
Transmittal Letter to Walter Massey, Chairman of SEAB
Table: Roles, Functions and Relationships of Various
Institutions with ISOs
Task Force SRRO Letter Report (November 1997)
Task Force Interim Report (July 1997)
Transmittal Letter to Walter Massey, Chairman of SEAB

For more information on the Electric System Reliability Task Force, please contact:

Richard Burrow
DOE, Secretary of Energy Advisory Board (202) 586-7092

QuickStabTM: Real-Time Prediction of Transmission System Loadability

Subject: UFTO Note – QuickStabTM: Real-Time Prediction of Transmission System Loadability
Date: Fri, 04 Apr 1997
From: Ed Beardsworth
| ** UFTO ** Edward Beardsworth ** Consultant
| 951 Lincoln Ave. tel 415-328-5670
| Palo Alto CA 94301-3041 fax 415-328-5675

(The developer of this program was referred to UFTO by a staff member at DOE. The following write up was prepared by him. Note the special offer for UFTO Members, in the last paragraph.)

QuickStabTM : Real-Time Prediction of Transmission System Loadability

Today’s utility systems are likely to be dispatched near the limit of capacity and stability. In the context of open transmission access, network loadings will often get close to unstable states undetectable by conventional power-flow, optimal power-flow and contingency analysis programs. Such states will have to be predicted before they occur.

Without a real-time ability to determine how close the system is to a critical state, utilities will be less able to operate reliably and to compete effectively in the deregulated market. Also, the real-time assessment of the maximum loadability will have to be performed LOCALLY by EACH utility, in addition to, or rather than, being performed only at ISOs or large area coordination centers (power pools).

Critical states occur at, or within a certain margin from, the maximum power transfer capability, or maximum loadability of a power system. This limit is not constant. It depends on the generation, customer demand and transmission network conditions. In order to be meaningful and reliable, it must be computed from the real-time conditions of the transmission network.

A field-proven solution to this problem is available. A maximum loadability predictor has been developed and successfully tested and validated. It determines the transmission reliability margin corresponding to a given system state and evaluates the distance to the point of maximum loadability of the transmission network. In addition, it displays the results in a suggestive, easy-to-understand graphical format, and provides information that can help develop a quick remedial action strategy.

The program, known as QuickStabTM, offers significant benefits. It can help increase revenues from wheeling charges while meeting higher MW demand and reliability requirements. It is well suited for short- and mid-term operations planning scenarios. And it can be used on-line to supplement existing real-time computing facilities. Its modular design and portable code implementation make it possible to integrate the stability calculations with existing power-flow, optimum power-flow and security assessment applications.

As a special offer to UFTO members, QuickStabTM will be made available FREE for a 60 days trial period. Since users need to understand the methodology and be technically proficient at doing load flow and steady-state stability calculations, a training workshop will be provided at moderate cost to address the solution technique, definition of study cases, data preparation procedures, program installation, and interpretation of results.

For additional information, or to arrange for a private, exclusive QuickStab presentation at the upcoming PICA 97 conference, please contact:

Dr. Savu Savulescu
5104 Woodmere Drive, Suite #204
Centreville, VA 20120-4333

High Strength Conductors

Subject: UFTO NOTE — High Strength Conductors
Date: Fri, 20 Sep 1996 13:18:23 -0700
From: Ed Beardsworth

| *** UFTO *** Edward Beardsworth * Consultant |
| 951 Lincoln Ave. tel 415-328-5670 |
| Palo Alto CA 94301-3041 fax 415-328-5675 |

High Strength Conductors
A new class of alloys developed at Ames Laboratory has 10 times the tensile strength of copper, at about 80% the electrical conductivity. These are deformation processed copper metal matrix composites that have a long filamentary microscopic structure.

Possible applications, in addition to non-sagging transmission and distribution wires that could allow hotter operation and increased tower spacing, include use in equipment where tensile strength is extremely important, such as generators or pulsed-power magnetizers that are used to make permanent-magnets.

While the metallurgy aspects have been published in trade journals, there’s been no funding currently available to pursue these various power systems applications. The Lab would appreciate input from interested industrial parties.

In related work, the Lab also has developed improved aluminum metal-matrix composites with increased strength and very little loss of conductivity, which may be another candidate for power conductor applications.

Contact: Larry Jones, (Principal Investigator), Ames Laboratory, 515-294-5236

T&D Workshop

Subject: UFTO T&D Workshop
Date: Fri, 30 Aug 1996 09:19:20 -0700
From: Ed Beardsworth <>


A preliminary program concept and invitation

Subject: What’s needed on the T&D grid now and in the future

What do the Labs have to offer

(Topics to include: equipment, devices, systems, operations, maintenance, automation, materials, sensors, reliability, analysis, planning, etc., FOR THE GRID. Not generation, storage, end-use, etc.; distributed resources only to extent of assessing impact on the grid.)

Attendance: (by invitation)

— UFTO Member Reps and/or T&D Experts
— Federal Lab representatives
— (possible) Selected startups/vendors with new and innovative ideas and products

Purpose — A chance for:

— An informal dialogue and exchange of ideas;
— The market to say what it needs;
— The Labs to show what they have done and can do;
— Relationship building;
— Exploration of collaborative opportunities.

Place: Richland (Tri-Cities) WA, Pacific Northwest National Lab (PNNL) has offered to be the host.

Time: Week of October 21 or November 4. 1 1/2 days

(Optional/encouraged to stay on for tours, other meetings, etc.)

Costs: Own travel and accomodations.

(Possibly a small registration fee to cover meeting expenses.)

Format: Short presentations by both utility and lab attendees, with lots of roundtable discussion.

Success Measures: All attendees learn something useful; collaborations initiated; utilities adopt lab technology; labs gain better understanding of market needs; etc.

Background: UFTO member utility companies have seen detailed reports that describe the work at each of many Federal Labs, and this material has been well received. Now, their goal is to concentrate in a particular technical area, and bring together representatives and the technology offerings from across all the labs, for the purposes outlined above.

Though DOE is not currently funding T&D research, the labs have long experience, many exciting products, innovations and ideas, and technical expertise that can be brought to bear (e.g. systems analysis, sensors, materials, etc., just to name a few).


Please respond as soon as possible, by email, fax, or phone, on the following points:

1. Will someone from your organization be likely to attend? (If not, what changes would increase the likelihood?)

2. How does this sound to you? Is it a reasonable starting point? Any thoughts, suggestions?

3. Workshop Content:

Labs: What technologies would you like to present? What questions would you like answered?

UFTO Utilities: What areas would you like to have emphasized? Would you prepare a presentation on (some aspect) of industry needs? Would you help in the planning? Be chairperson?

4. Preferences on dates.

| *** UFTO *** Edward Beardsworth * Consultant |
| 951 Lincoln Ave. tel 415-328-5670 |
| Palo Alto CA 94301-3041 fax 415-328-5675 |