True Plug and Play for Energy Advances

We’ve been working with a startup company that’s come up with plans for a box that will streamline the installation and use of new energy technology. They have designs, have applied for a patent, and are already getting strong interest from residential developers as their first market entry point. The company is seeking strategic partners and capital. Here, in their own words, is the basic idea.

PPSI’s Modular Energy and Services Appliance (MESA) is a revolutionary device that finally launches the home or business into the modern power age. Imagine a cabinet installed at the home or business that replaces the electric meter and service entry panel with smart technology that immediately reduces energy costs and enables further savings opportunities, by providing for safe and easy operation and clean installation of one or more of emerging energy technologies: solar power, wind power, back-up battery, generator or fuel cell.

PPSI Overview

Many existing, new and emerging energy related technologies are available or soon will be available for home and small business users. All experts agree this already large market is going to experience significant growth in the coming decade. Yet, while many consumers desire these products for cost saving or other personal reasons, to date "something" has been holding them back. The missing "something" is a common integration platform to reduce the many risks faced by the consumer. To address this need, PPSI has created the Modular Energy and Services Appliance or MESA.

The MESA approach allows any desired energy related device to be installed simply and easily in its expansion cabinet via PPSI’s proprietary interconnection and mounting technology.

Built-in devices:
    Power conditioning (saves energy and money)
    Peak Power usage monitoring

Expansion devices:
    Backup Power
    Solar/Wind integration
    Batteries (Time Shifting of Power Usage)
    Power Resale
    Vehicle Refueling

The MESA significantly reduces consumer risks including:

1.    Cost
2.    Selection
3.    Integration
4.    Support
5.    Obsolescence

Additionally the MESA provides a go-to-market platform for the makers of energy related devices, which allows them to focus on their core strengths and leave the marketing, sales, distribution and support issues to PPSI.

The current situation is reminiscent of the early days of the personal computer industry where the components existed but large numbers of usable systems did not ship until Apple and IBM took up the integration challenge to create a functional and easily accessible platform.

The initial MESA distributors are expected to be leading real estate developers. Why?

– faster time to market
– more desirable homes
– regulation/permitting process favors alternative energy technologies
– current, strong need

Follow-on markets potentially include solar/wind installations, utilities, home remodelers and business facility upgrades.

The PPSI MESA can accelerate the upcoming energy market growth and control a large portion of the market due to its unique integration capabilities and PPSI’s focus on owning the space between the customers and component manufacturers.
Jeff Adams
Peninsula Power Systems

Virtual Utility Technology License Available

The “Virtual Utility” (VU) concept provides intelligent coordination and aggregation of distributed resources through web-based connectivity. ABB developed an extensive portfolio of technology and IP which is now being made available for license, as an “enabler” in distributed generation markets. This comes as a result of the company’s recent move to tighten its business focus.

The ABB VU technology is centered on an internet-accessible control center by which clients or aggregates of clients can intelligently monitor and control distributed resource assets. Both distributed generation (DG) and distributed storage assets can be connected by the VU into a single highly flexible integrated power resource.

Both utilities and large consumers of energy will use the VU. Once commercialized, the VU can be sold as either an enterprise-wide “micro SCADA-like” system or as an Internet service provider where customers can call in to monitor and control their assets. The value provided by such a product could consist of any or all of the following:

– Universal monitoring ? the VU can offer the possibility of monitoring all distributed resource assets regardless of type, manufacturer, or date of manufacture.
– Power reliability ? with interconnected DG one can guarantee higher availability for important loads.
– Peak shaving ? fast dispatchable generation can avoid maximum demand surcharges and curtailment orders.
– Network optimization ? connection of DG units can be optimized to ensure the most economic and secure network; microgrids can be operated where bulk power supply reinforcement cannot be justified.
– Network safety ? protection settings can be monitored and calculated dynamically to ensure that power flows do not affect network protection parameters.
– Energy trading ? aggregated units can provide surplus energy from non-DG sources, which then can be sold.

Several business models are possible using such tools. Revenues can possibly be generated proactively ? by engaging in peak shaving, energy trading, premium power, etc. or by providing a service bureau business to allow others to access and control the DG equipment through a server that contains the required intelligent applications and communication technology. This latter arrangement relieves the customer of the responsibility of maintaining the database, updating software applications, etc. and provides the financial attractiveness of a lease rather than a purchase.

The Virtual Utility can have a significant impact on the bottom-line of a DG project or series of projects. Although the cost of the control and communication system is usually a small part of the cost of the project, its performance can be a determining factor in overall economic success. An intelligent control system can ensure the lowest energy and maintenance costs, the largest profit, the best payback, or even the greatest system reliability. It also can aggregate many small power generators into a more marketable mass.

The VU concept can be applied to both new and existing assets. As a minimum, the retrofit to existing emergency back-up generators would provide value in automatic testing and reporting. Further benefits of peak shaving and aggregation of load can also be realized depending on the VU owner.

VU also solves another serious future issue for distributed generation — the ability to connect many various distributed devices involving different technologies and manufacturers. VU thus becomes the infrastructure for all distributed resources and an enabler for market expansion.

The ABB concept is focused on low installation and operating cost, flexible control intelligence, and universal adaptability along with possible integration with existing power system assets. Low costs are achieved through technologies such as a browser based data server, wireless LAN, and the communication and control network. Control intelligence is achieved via economic planning and optimization algorithms, utilizing situation specific dispatching levels, and a hybrid central / local control logic. This platform is universally accessible to all distributed resources through intelligent electronic device configuration and information handling processes.

This intellectual property is represented by a patent portfolio, technical documentation, business model and market evaluation, and technical expertise related to hardware, software, and analytical tools. Technical assistance would be available to assist the integration of this technology into a current system or developing and commercializing a new system.

For more information, contact UFTO, if you or any company you work with might have an interest.

On-Line Transformer and Battery Monitoring

Serveron Corp. launched itself in February as the industry’s first provider of full time monitoring services for T&D equipment. Starting with the gas-in-oil sensors developed by a predecessor company, Micromonitors, Serveron offers a complete solution, from instrumentation, to on-line monitoring, to (condition-based) maintenance scheduling and asset management, to risk management. The company also has comprehensive monitoring technology for station battery systems. The complete suite of applications also covers tap changers, arresters, bushings and breakers.

Large Power Transformers:
Note some alarming facts about the T&D infrastructure, and large transformers in particular. The fleet is “graying” — the average age of units now in use is 35 years. Hartford Steam Boiler has data showing an exponential increase in serious failures: 1% of large transformers (1,000 transformers in the US alone) will fail this year, and the failure rate will rise to 2% by 2008.

The average cost of such a unit is $2-3 million and lead time for new ones can exceed a year or more, so a major failure has very significant implications. An early target — powerplant step-up transformers. Any event that could take part or all of a plant’s capacity off-line for a long time becomes even more crucial in today’s climate.

In addition, major savings can be realized with true condition-based maintenance. Since monitoring and diagnostics have not been readily available or cost-effective, utilities now perform maintenance on arbitrary schedules, but estimates are that 30% to 50% of that work is unnecessary. Finally, capital equipment replacements can be prioritized and scheduled in ways that specifically minimize physical and financial risk.

Serveron’s TrueGas™ analyzers monitor the levels of volatile dissolved gases in the insulating oil in large transformers and other oil-filled equipment. Over the life of a transformer, fault gases form due to the degradation of the insulating materials or from the presence of thermal or electrical faults. The type and concentration of these gases are primary indicators of transformer condition and types of faults.

TrueGas analyzers are the only instruments available today that detect and separately analyze trace levels of all eight fault gases. Other instruments detect only a subset of these gases or provide only combined gas data that may not accurately predict equipment failures.

Since serious problems evidence themselves only hours to days before a failure, realtime online measurements and analysis are critical. Test procedures that involve the periodic drawing of samples and sending them to a lab just can’t do the job.

Serveron’s on-site equipment and Web-based analysis software provide continuous monitoring during actual operations, and thus early identification of transformer conditions that require maintenance or that could lead to catastrophic failure of the equipment.

The company will also integrate other sensor data into the system, such as electrical, thermal and mechanical (e.g. acoustic/vibration) parameters.

Battery Systems:
All power plants and T&D substations have large banks of batteries which provide back-up power required for startup and for graceful shut down in the event of an unplanned outage or equipment failure. There can be 50 to 70 truck-battery-sized cells in each bank, for a total of tens of thousands of individual battery cells in an average utility, at hundreds of remote locations. Inspection and maintenance is a major cost, as these systems must function when called upon. (In nuclear plants, they also have to be available, or the plant may have to shut down.)

Serveron’s CellSense™ monitors provide continuous measurements of all key physical and electrical parameters needed to characterize the condition of all individual cells as well as the battery system as a whole. CellSense™ instruments monitor the batteries on-site, and graphical data can be viewed from any remote location using a common browser to access Serveron’s secure web site. With CellSense™ monitoring, battery maintenance and inspection can be reduced from a monthly to an annual activity.

I have a company powerpoint presentation (400kb) that I can send on request, and more information is available on the company’s website:

Contact: Jim Moon, CEO 541-330-2350 — Intelligent fuel management.

A profitable existing company is going to a new stage of growth, with a new name and fully web-enabled extension of their business model. Acting directly on behalf of buyers of liquid petroleum fuels, they monitor (wireless/internet) the level of fuel in the customer’s tank, optimize fuel purchasing, and arrange delivery, taking a fixed fee per gallon delivered.

As a result, the customer:
– No longer has to manage their own fuel tank inventory
– Is assured that tanks will never run out of fuel
– No longer needs to negotiate decentralized contracts or daily pricing
– Can leverage their volume through TeamFuel purchasing power
– Is guaranteed the lowest possible price and optimal delivery of their fuel

They already have several major utilities as satisfied clients (APS, PSEG, SoCalEdison, ) and provide them with either fleet fuel or generation fuel.

The website will be up in another week or two. Dynamic Inventory Management actually occurs on password protected intranet sites, one for each client.

They are seeking equity investment in two rounds, one now and the second next year, to scale up their software/server capabilities and add sales and marketing staff.

An executive summary and business plan are available for possible investors. New customer contacts are also more than welcome. If you’d like more information, contact

Bill Green, CEO 415-381-2783

Here is a brief summary posted on (a new silicon valley company supporting startups by providing access to angel and venture investors

Each year U.S. commercial vehicle fleets, utilities, railroads, and airlines spend more than $100 billion on fuel. This fuel is stored in and distributed via a network of 200,000 tanks, which range in size from 10,000 gallons to over 100,000 gallons. The variable consumption patterns of these tanks – along with environmental compliance laws, interstate fuel tax calculations, and fluctuating fuel prices – make the procurement and management of fuel for these tanks a time consuming and expensive proposition for tank owners. TeamFuel provides an outsourced fuel management solution that acts as a intermediary between the thousands of local fuel suppliers and the tanks they service.

TeamFuel’s software and remote monitoring solutions optimize fuel purchases (via demand aggregation and market timing), resolve complex environmental and tax issues, and deliver guaranteed savings to fleets and tank owners. Unlike FuelQuest, which is a marketplace for suppliers, and FuelMan, which focuses on over-the-road fuel purchases by truck drivers, TeamFuel addresses the needs of fleets and tank owners.

TeamFuel’s dynamic inventory replenishment strategy is currently used by Walt Disney, Frito-Lay, Laidlaw, Southern California Edison, Toys “R” Us, Arizona Public Service, and 65 other companies. These customers have signed long-term management contracts, with a fixed fee per gallon, for TeamFuel’s services. The Company profitably generated revenues of $1.2 million in 1999. 2004 revenues are projected to be $88 million.

TeamFuel’s management team and 12-person staff have deep experience in the fuel and energy industry. The Company’s CEO previously founded a chemical exchange and has extensive experience in supply chain management. The founder and President of TeamFuel has been involved with fuel procurement outsourcing for more than 20 years.

CADER/DPCA Symposium on Distributed Resources

[I’ll be attending the DOE Distributed Power Program Review and Planning Meeting in Washington next Monday September 27, followed by the IEEE working group session.]

San Diego Sept 13-14

(see program/agenda at

The meeting was very well attended, exceeding expectations, with roughly 400 registered. It included keynotes by notables (Larry Papay of Bechtel, Dan Reicher, Ass’t Secty, EE/DOE, and David Rohy, Calif Energy Commissioner) and two days of parallel sessions on “Policy”, “Technologies” and “Markets”. It was impossible to be in 3 places at once, however the 2″ thick binder provided copies of the vugraphs from most of the presentations.

A dominant theme: it is not a matter if, or even when, but only of how fast, distributed generation will be deployed on a major scale. In fact, DG is already here, and has been for a long time, in various forms and applications. If it truly is a “disruptive technology”, then we can expect it to lurk below the surface, serving in various niche applications, until a crossover occurs and it emerges an a major scale.

The biggest issue seems to be interconnection with the grid. Advocates see utilities as putting up strong resistance. One speaker, Edan Prabhu, explained it terms of distribution departments, at the low end of the totem pole in utilities, trying to protect themselves and their “turf” from this dangerous invasion of “their” system. He explained how the good guys meet the “nice guys”–DG advocates vs. the well-meaning protectors of the system.

There was considerable muttering in the back of the room as speakers from the California utilities claimed to be doing all they can. Repeatedly, we see instances where utilities can handle interconnections just fine, when they want to. In other situations, however, they seen as throwing up roadblocks and delays. Ironically, utilities are entirely comfortable with large motors, which feed back fault current when voltage disappears, but this same issue is seen as a huge problem for DG.

As Dan Reicher explained in his comments, nine states have now gone ahead to establish some kind of interconnection standards for small scale generation, while the long term answer is to have one new national standard. The IEEE work under Dick DeBlasio is key to this, and DOE also supports the development of advanced hardware and software for interconnection.

There was a very good summary of the remarkable events in Texas, where a process has moved with unprecedented speed to cut through the confusion and arrive at an interim set of workable policies. The proposed rules are available online:

A hearing is scheduled for October 25. The presentation was given by Nat Treadway, a former PUC analyst, who is now on his own. 713-669-9701,
New York state has a similar initiative for small DG (under 300 KVA). A commission staff proposal was issued in July, however timing of a decision is uncertain. Comments were due by September 20.
In California, the PUC took longer than expected to announce a decision on a staff recommendation to split their rulemaking proceeding into two parts — Distribution Competition, and DG Implementation Issues. A draft decision to do this was finally announced Sept 21, and is now available online (2 documents) at:
The California ISO presented an interesting comparison of technical requirements for large generators on the system with what might be needed for DG. Generators need to have sophisticated communications and control capabilities that the ISO can monitor and talk to directly. The ISO is implementing the “ANALOPE” system to do some of this over the internet (there is a strong need to certify bids and contracts–i.e. failsafe digital signatures). Once this is established, it may pave the way for the use of internet technology to communicate with DG’s and enable them to participate in the California energy and ancillary services markets.
(Contact: David Hawkins 916-351-4465
The Technology sessions featured presentations by makers of microturbines, fuel cells, reciprocating engines, dish stirling, storage, and renewables. Discussions on “Markets” ranged from the “sleeping giant” of international electric demand, to combined heat and power and the use of smart technology to capture market value. Selected items may be featured in future UFTO Notes.

Gridcom Powerline Sensors

A remarkable new type of low cost and easily installed intelligent powerline sensors are nearing commercial readiness. They come in three flavors:

– Medium Voltage Single Phase Overhead (4 – 69 KV)
– Medium Voltage Single Phase Underground
– Low Voltage Single and Multi-phase Underground (e.g., 208 V)

The medium voltage devices simply clamp on the cable, and measure voltage and current without a connection to ground or a phase-to-phase connection. There is no penetration of cable voltage insulation. (It is not applicable to coax or multiple conductor configurations–only single unshielded cables.) The underground units are self-powered by the power line, and the overhead ones use batteries that will last 5 years or more.

They are said to be approximately ten times cheaper to buy and install, and offer far greater capabilities than anything else on the market. Measurement accuracies (I, V, P) are quoted at better than 3%, though the units invariably do much better. It is not a revenue meter, however.

Evaluation units are available now, and the first production units will be ready before the end of the year. Five utilities (including one or two UFTO companies) have been testing overhead sensors.

The sensors measure current and voltage and can be equipped to measure and/or detect a number of additional conditions or quantities including temperature, moisture, specific substances, light, acceleration, and vibration. Underground sensors utilize two-way powerline carrier communications over the existing lines and overhead sensors communicate through two-way low power RF systems.

Each sensor has its own local on-board intelligence to perform data processing and analysis. In typical applications the sensors calculate true rms voltage and current, power factor and harmonic content. Peak rms quantities and fault recognition capabilities can also be employed.

The sensors report by exception, when polled, or at determined times. Since data is processed at the sensors, communications bandwidth requirements are relatively low. Only processed data or observed data related events (like faults, voltage dips, or high current limits) are reported — not extensive strings of raw data.

Typical functions of these sensors (both overhead and underground) include:

– Detection and location of faults
– Measurement of power quality
– Identification of grounding and cable insulation issues
– Detection of non-technical losses
– Detection of unanticipated loads
– Confirmation of recloser, sectionalizer and other switch operations
– Support capacitor switching algorithms
– Monitoring distributed generation


Infrastructure Monitoring
– Distribution Automation
– Operations Support
– Fault Detection, Classification and Location
– Power-line losses
– Power Factor and VAR Monitoring
– Switch Operation Confirmation
– Planning Studies
– Circuit Design

Condition Based Maintenance
– Cable Burnout and Circuit Limiter Detection (low voltage U/G)
– Equipment Health Status (Fuse, Cutout, Transformer, Switch)
– Tree Trimming Effectiveness

Beyond the Meter Services
– Power Quality
– Sub-metering and Beyond-the-Meter Distribution Networks
– Harmonic Analysis

The underground sensors were initially developed for Consolidated Edison’s Secondary Underground Network Distribution Automation System (SUNDAS). The objective was to develop a comprehensive sensing system that would be relatively inexpensive to purchase, install, operate and maintain.

Con Ed has tested experimental versions of the low voltage underground sensors in their Battery Park City and Harlem networks. These tests demonstrated the capabilities of these sensors to monitor powerline conditions and to detect variations in line conditions associated with circuit limiter loss, arcing faults, changes in network protector relay status and unusual changes in power flow patterns. Based on the performance of the experimental sensors, Con Edison will install GridCom sensors throughout the Hunter network with installations beginning this fall.

US Patent No. 5,892,430: Self-powered powerline sensor
The company’s website has a lot of information and pictures:

Contact: Rich Wiesman, 781-684-4387

LBNL Building Technology

(One of a series of notes detailing results of recent visits to
Lawrence Berkeley National Labs – LBNL)

Building Technology Dept.

Commercial Building Systems, Simulation, Windows & Daylighting, Lighting, and Applications
LBNL has one of the largest US building RD&D activities; active since 1976 in this field, approx. $18M per year in funding currently; with about $12M from DOE and remainder from other sources, addressing most major aspects of building energy use, including hardware, systems, software, indoor environmental issues.
Stephen Selkowitz, Dept. Head, 510-486-5064


Diagnostics for Building Operation and Commissioning
Commercial buildings alone consume about 15% of all energy at a cost of $85 billion annually. Half of this consumption is wasted, compared to what is cost-effectively achievable. To realize these savings requires a careful examination of the process by which buildings are designed, built, commissioned, and operated, using a life-cycle approach.

A multi-year project is underway to develop and apply technology to improve building operation and maintenance. In a collaborative effort among researchers, building owners, utilities and private industry, an interdisciplinary team has been gathered to:
– Assess the current state of performance technology
– Develop an appropriate information gathering and diagnosis capability
– Test this new diagnostic system in real buildings


Information Monitoring and Diagnostic System (IMDS)
160 Sansome, San Francisco

The first IMDS has been installed and is now operating in an 18 story 100,000 sq ft, class A, San Francisco office building, built in 1964.

The IMDS includes 56 sensors, 34 calculated fields (for a total of 90 monitored data points), computer-based communications, data archival and retrieval capabilities, diagnostic information processing, data visualization, and other components that meet the needs expressed by building owners and property management companies. Existing proven hardware and systems were used, and the focus is on obtaining detailed accurate technical data (e.g. sufficient for calculations for a performance contract). Note this is a passive system, performing measurements only, and not control of equipment. A detailed specification is to be published.

This system implements a top-down approach, with diagnostic and information visualization algorithms, at three levels.
– Level I diagnoses whole-building performance at the aggregate level,
comparing to other buildings with similar energy services.
– Level II examines major end-use systems, and
– Level III focuses on major subsystems.

Savings opportunities of 10% were identified in the first four months. Life cycle cost issues have come into play, for example, improper rapid cycling of equipment. The active participation of the building’s innovative owner and operators should help publicize the effort and influence others in the industry. More recent findings suggest that the IMDS has proven extremely useful to the on-site building operators, helping them to improve control of the entire building.

Project Team Leader: Mary Ann Piette, 510-486-6286,
The project homepage:

“Development and Testing of an Information Monitoring and Diagnostic System for Large Commercial Buildings,” (paper presented at the ACEEE Summer Study on Energy Efficiency in Buildings, August 1998).

There is a detailed “Virtual Tour” at:
A project overview appears at: (


Building Life-Cycle Information Support System (BLISS)

BLISS is intended to provide a distributed computing environment for managing, archiving, and providing access to the wide variety of data and information that is generated across the complete life-cycle of a building project.

— > Identify Contraints/Opportunities — >
** Design — > Construction — > Commissioning — >
Monitoring — > Operations/Maintenance — >
Retrofits/Use changes — >
Re-evaluate Opportunities — > **

BLISS requires standardization in both a common building database model and in the mechanisms for transferring this information between tools.

The project has three major elements: (1) to specify the distributed software architecture, (2) to develop a life-cycle building model database schema, and (3) to develop a mechanism to capture and update “design intent” throughout the life cycle. The distributed systems architecture describes how various software components communicate, and the building model schema specifies the structure and semantics of the database (e.g. how performance metrics are defined and represented quantitatively).

BLISS is being developed within the evolving software specification from the International Alliance for Interoperability (IAI). The IAI is a non-profit alliance of the building industry with six international member chapters. Its mission is to integrate the industry by specifying Industry Foundation Classes (IFCs) as a universal language to improve communication, productivity, delivery time, cost, and quality throughout the building life cycle.

Currently, Metracker is a tool being developed to help capture design intent via a number of performance metrics and then track changes in those metrics over the life of the building. The data schema is built on the IAI building data model. It is being tested on a new building in Oakland CA.
Contact Rob Hitchcock, 510-486-4154,


Remote Building Monitoring and Operations(RBMO)

A prototype system has been developed which permits remote monitoring and control of multiple commercial buildings across the Internet from a single control center. Such a system would be used by owner/operators of multiple buildings, such a school districts, governments, universities, large retailers, utility companies, building management firms, etc. Average savings estimated at 15% would come from reducing energy waste from equipment that runs when it does not need to, set point optimizations, and correcting operations and control deficiencies.

The project was initiated as a demonstration of the use of internet protocols and open systems for building monitoring, permitting integration of equipment from multiple vendors. It addresses similar IT issues of authentication, access-security, etc., which arise in a major Lab program on sharing scientific instrumentation over the internet.

The project includes the following components.

An Internet-to-building-EMCS (Energy Management Control System) gateway which speaks CORBA (Common Object Request Broker Architecture) protocol atop TCP/IP on the Internet side and either (preferably) BACnet atop TCP/IP, or a proprietary EMCS communications protocol, to the building EMCS.

Development of applications-level object specifications for HVAC objects, e.g., chillers.

A remote building monitoring and control center which will provide data visualization, database management, building energy simulation, and energy usage analysis tools.

Deployment and testing of the system in multiple buildings with diverse types of EMCS systems. Our goal is to assess scalability of the system to large numbers of buildings, both in terms of performance and accommodating heterogeneity of control systems and HVAC systems.

Remote control of HVAC systems – this awaits the availability of a secure CORBA implementation.
Frank Olken 510-486-5891


Simulation Research

The Building Energy Simulation User News is a quarterly newsletter for the DOE-2, BLAST, SPARK, EnergyPlus and GenOpt programs. Sent without charge, the newsletter prints documentation updates, bug fixes, inside tips on using the programs more effectively, and articles of special interest to program users. The winter issue features a cumulative index of all articles ever printed. Current issues are available electronically (below). All issues are available via regular mail, by request.

To subscribe or to request a back issue, contact: Kathy Ellington,

DOE-2 is a computer program for the design of energy-efficient buildings. Developed for DOE, DOE-2 calculates the hourly energy use and energy cost of a commercial or residential building given information about the building’s climate, construction, operation, utility rate schedule, and heating, ventilating, and air-conditioning (HVAC) equipment. A new version, DOE-2.2, includes an integrated SYSTEMS-PLANT program based on circulation loops with tracking of temperatures and flows, luminaire/lamp modeling of lighting systems, a window-blind thermal/daylighting model, input value defaulting using expressions, and expanded building component libraries.

EnergyPlus – A new-generation building energy simulation program based on DOE-2 and BLAST, with numerous added capabilities. Developed by the Simulation Research Group, the Building Systems Laboratory at the University of Illinois, the U.S. Army Construction Engineering Research Lab, and DOE.

GenOpt – A tool for multi-dimensional optimization of an objective function that is computed by a simulation program. This project at LBNL is sponsored by the Swiss Academy of Engineering Sciences, the Swiss National Energy Fund, the Swiss National Science Foundation, and DOE.

SPARK [Simulation Problem Analysis and Research Kernel]
A program that allows users to quickly build models of complex physical processes by connecting calculation modules from a library.

BDA: Building Design Advisor – A computer program that supports the concurrent, integrated use of multiple simulation tools and databases, through a single, object-based representation of building components and systems. Based on a comprehensive design theory, the BDA acts as a data manager and process controller, allowing building designers to benefit from the capabilities of multiple analysis and visualization tools throughout the building design process. The BDA has a simple Graphical User Interface that is based on two main elements, the Building Browser and the Decision Desktop.

International Alliance for Interoperability (IAI) – With international partners, develop Industry Foundation Classes(IFC) and an integrated building information model for describing buildings. Develop methods for allowing applications, such as CAD and energy analysis, to interoperate with the information model. Interoperability will allow diverse building drawing and simulation tools to share the same building description and to exchange results, thus simplifying building design, construction and operation.

RESFEN – A PC-based computer program (using DOE-2 as the simulation engine) for calculating the heating and cooling energy performance and cost of residential fenestration systems. RESFEN is free on a CD.


Windows & Daylighting
Stephen Selkowitz 510-486-5064

– > Glazing Materials Research – Low-Emittance and Solar Control; Static spectral filters; Deposition Processes

– > Characterization facilities/optical lab for in-house research, manufacturers, and to support product rating and related standards activities.

– > The Optical Data Library provides glazing layer (peer-reviewed) optical data for over 800 commercially available products; this data is used with the WINDOW and Optics software.

– > New Materials: track of new materials R&D around the world–strong ties to IEA.

– > Manage the DOE Electrochromic Initiative – 2 labs, 4 manufacturers
Electrochromics or “smart windows” have the potential for becoming an important element in building load management due to their ability to control perimeter cooling loads and lighting loads, both of which are major elements of building peak demand. Occupant control of window shading systems is notoriously unreliable. A smart window whose solar heat gain coefficient can be modulated over a 5:1 range provides a significant new opportunity. While coating development work continues at LBNL and with industry partners, a German product is being purchased by LBNL to test in an office building in Oakland, with a focus on control integration and load management issues.

– > Advanced Systems development, testing, evaluation

– > Window Properties – determining the thermal and optical performance of window systems

– > Daylighting – LBNL has recently recieved substantial funding from California utilities to help convert RADIANCE, a lighting and daylighting research tool that is highly accurate but hard to use, to a desktop environment design tool with a user friendly interface and link to CAD software. A first version will be released in 1999; improved version with additional capabilities in 2000.

– > Residential performance – support Energy Star program; Annual Energy Ratings

– > Commercial Glazing Performance- ramping up R&D in this area, beginning with development of a design guide for architects and engineers. Later will be looking at advanced facade systems and their role in intelligent buildings. Innovative building skins are seen as not only energy savers but as building features that enhance the quality of the indoor space.


Lighting Research

The Lighting Research Group researches and develops fixtures, controls, and software which employ and promote energy efficient lighting. The group is primarily funded by DOE, although some funding is provided by industry for specific projects. The group is recognized as one of the main players in the lighting industry, as both technology developers and as observers/influencers. As such they have an indepth awareness of technological developments, issues and trends in the industry.

Research projects include sources, controls, fixture design, and human factors. Software for lighting design is a major R&D area. The test lab has the equipment which is essential for testing and designing energy efficient lighting fixtures, including a goniometer, integrating sphere, and spectro-radiometer for measuring light output. There is also an electric power analyzer for testing power and power quality of light sources.

The lab has in-house and collaborative work in new kinds of light sources that are being developed — solid state, electroluminescent, white LED, and organic liquids.

Their work to design the (non-halogen) compact fluorescent torchiere has led to the commercial availability on a wide scale of these much safer and more efficient lamps. Several universities did free exchange programs for dormitory residents, and now some utilities are doing it for their customers.
(see website for more details:

Of interest to utilities, compact fluorescent bulbs (CFL) are growing in popularity, but there are issues about price, quality, and longevity. Some imports have low prices, but don’t last as long as they should. To deal with this, some utilities are specifying an unecessarily high number of life hours. Specifications need to incorporate the issue of how often lights are turned off and on, but current testing procedures don’t deal with this effectively. LBL is proposing a new approach to life testing, but lacks the funding to demonstrate it.

“Bi-level” light switching is cost effective, and it is now in the building code for the state of California. (two switches–one controls 1/3 of the lighting in a room, and the other controls the remaining 2/3). Other effective measures are photosensors (for daylighting) and occupancy sensors. But it is important to solve the right problem. Hotels got little benefit from occupancy sensors, because guests rarely leave lights on when they’re out of the room. The biggest waste was found to come from bathroom lights left blazing as a night light — providing a dimmed setting would work better.

Recently, LBL combined low-glare, lower level ambient lighting with custom designed task light fixtures, in a US Post Office sorting facility. Occupancy sensors turned the task light on only when the clerk was present. Task light levels were improved while overall energy was reduced by 70%.


Lighting Software

RADIANCE – A suite of programs for the analysis and visualization of lighting in design. Input files specify the scene geometry, materials, luminaires, time, date and sky conditions (for daylight calculations). Calculated values include spectral radiance (ie. luminance + color), irradiance (illuminance + color) and glare indices. Simulation results may be displayed as color images, numerical values and contour plots. The primary advantage of Radiance over simpler lighting calculation and rendering tools is that there are no limitations on the geometry or the materials that may be simulated. Radiance is used by architects and engineers to predict illumination, visual quality and appearance of innovative design spaces, and by researchers to evaluate new lighting and daylighting technologies. (for UNIX)

(Advanced Daylighting and Electric Lighting Integrated New Environment)
ADELINE is an integrated lighting design computer tool developed by an international research team within the framework of the International Energy Agency (IEA) Solar Heating and Cooling Programme Task 12. It provides architects and engineers with accurate information about the behaviour and the performance of indoor lighting systems. Both natural and electrical lighting problems can be solved, in simple rooms or the most complex spaces. ADELINE produces reliable lighting design results by processing a variety of data (including:geometric, photometric, climatic, optic and human response) to perform light simulations and to produce comprehensive numeric and graphic information. (for PC)

SUPERLITE 2.0 is a lighting analysis program designed to predict interior illuminance in complex building spaces due to daylight and electric lighting systems. SUPERLITE enables a user to model interior daylight levels for any sun and sky condition in spaces having windows, skylights or other standard fenestration systems.

LBL Lighting publications are available (some can be downloaded) at:

Steve Johnson 510-486-4274


Home Energy Saver

The Home Energy Saver(HES) website, announced in March ’99, brings advanced building simulation software to an interactive website to help consumers identify the technologies that will save them the most energy and money.

The Home Energy Saver quickly computes a home’s energy use on-line based on methods developed at LBNL. By changing one or more features of the modeled home, users can estimate how much energy and money can be saved and how much pollution prevented by implementing energy-efficiency improvements. All end uses (heating, cooling, major appliances, lighting, and miscellaneous uses) are included.

The Home Energy Saver’s Energy Advisor calculates energy use and savings opportunities, based on a detailed description of the home provided by the user. Users can begin the process by simply entering their zip code, and in turn receive instant initial estimates. By providing more information about the home the user will receive increasingly customized results along with energy-saving upgrade recommendations.

Developed for the ENERGY STAR Program (EPA and DOE).

The HES Mission Statement ( ) explains the way the program seeks to work with and support private-sector vendors, by complementing their efforts, not competing with them.

Nor is it intended to compete with private vendors of web-based software who seek revenues from utilities who license their products. Nevertheless, utility partnerships with HES are still possible, and indeed some have already begun.

Contact: Rich Brown, 510-486-5896,

Argonne Visit notes

This is a quick highlights memo about the UFTO visit to Argonne, July 15, 16. A full report will be forthcoming early this Fall.

For the first time, a sizable contingent of UFTO member companies was present for the whole visit. I hope this can become our standard practice, with even a bigger attendance. Argonne made excellent presentations for us. We all agreed that it was a good *beginning* of what must become an ongoing dialogue.

If you want a headstart on some of Argonne’s work, here are a few things we heard about that really piqued the group’s interest:

Comprehensive GIS with massive data on gas system. See separate NOTE, or go to this webpage:
**User Access is available on request, on a collegial basis.** The limitation is server capacity, so ANL is not in a position to throw it wide open. They are also very open to any companies that want to provide better data on their own gas T&D systems–which can be kept confidential.
Contact Ron Fisher, 630-252-3508,

— Ice Slurry District Cooling
UFTO reported on this back in 93/94. It is now privately funded, and has advanced considerably. Ice slush dramatically increases the capacity of new or retrofitted central cooling distribution systems.
Contact Ken Kasza, 630-252-5224,

— On-Line Plant Transient Diagnostic
Uses thermal-hydraulic first principles, along with generic equipment data, in a two-level knowledge system. Neural net models of the system can rapidly indicate what’s causing a transient, e.g. water loss, heat added, etc., and identify where in the system the problem lies. The system wouldn’t need to be custom built for each plant, except to incorporate the plant’s schematics. It’s been run in blind tests at a nuclear plant. Next step is to hook it up to a full scale simulator, and then go for NRC approval. A fossil application would be much easier.
Contact Tom Wei, 630-252-4688,
or Jaques Reifman 630-252-4685,

— Advanced NOx Control with Gas Co-firing
Closed-loop controller adjusts furnace control variables to get optimal distribution of gas injection to yield greatest NOx reduction. Typical systems use gas at 20% of heat input, but this system gets same or better NOx levels with only 7%. Joint effort with ComEd, GRI, and Energy Systems Assoc.
Contact Jaques Reifman 630-252-4685,
or Tom Wei, 630-252-4688,

Sensor monitor and fault detection system knows if the system is misbehaving or the sensor is wrong. Can see slow drift, signal dropout, and noise, giving early indicators of sensor failure, and providing assurance that the process itself is operating normally, thus reducing unneeded shutdowns. It also can monitor the process itself, for wide ranging quality control applications. MSET stands for Multivariate State Estimation Technique. A model learns expected relationships among dozens or hundreds of sensor inputs, and makes predictions for what each sensor should say, and this is compared with the actual sensor signal. Argonne has patented a unique statistical test for residual error (the difference) which replaces the usual setting of fixed limit levels. There are also important innovations in the neural net modeling, which is completely non-parametric.

Applications range from the NASA shuttle engine, to several power plants, to the stock market.
ANL contacts are Ralph Singer, 630-252-4500,
Kenny Gross 630-252-6689,

A spin off company is doing applications in everything else but electric generation. (Think of the possibilities in T&D!!) They call the product ProSSense. Website is at http//
Contact Alan Wilks, Smart Signal Corp, Mt. Prospect IL 847-758-8418,


Here is the text of ANL’s overview “Topic Capability Sheet”. Many of you got hardcopies of the complete set in the mail. They’re still available from Tom Wolsko ( I’ve also posted them on the UFTO website, until Argonne puts a final verion up on their own website.

Argonne National Laboratory:
A Science and Technology Partner for the Energy Industry

Argonne is a multidisciplinary science and technology organization that
offers innovative and cost-effective solutions to the energy industry.

— Introduction
Argonne National Laboratory understands that energy companies must meet growing customer demand by creating, storing, and distributing energy and using the most efficient, cost-effective, environmentally benign technologies available to provide those services. We also understand that they must use increasingly more complex information for decision-making, comply with a multitude of environmental regulations, and adjust to a rapidly evolving marketplace.

Argonne has more than 50 years of experience in solving energy problems and addressing related issues, for both its customers and its own needs. Combining specialities such as materials science, advanced computing, power engineering, and environmental science, Argonne researchers apply cutting-edge science and advanced technologies to create innovative solutions to complex problems.

— Argonne Solutions
Recent applications of that expertise include
– A Spot Market Network model that simulates and evaluates short-term energy transactions.
– A “fuel reformer” that allows fuel cells to use a wide variety of hydrocarbon fuels to make electricity.
– Advisory systems for plant diagnostics and management based on sensors, neural networks, and expert systems.
– MSET, a real-time sensor validation system that provides early warning of sensor malfunction.
– Decontamination and decommissioning techniques developed for Argonne’s own facilities.
– Advanced materials for system components, batteries, ultracapacitors, flywheels, and hazardous waste encapsulation.

— Contacts
Argonne’s Working Group on Utilities:
– Dick Weeks, 630-252-9710,
– Tom Wolsko, 630-252-3733,

For technical information, contact the person listed under the category of interest.

Nuclear Technology
David Weber, 630/252-8175,
– Operations and Maintenance
– Materials
– Reactor Analysis
– Safety
– Spent-Fuel Disposition

Fossil Technology
David Schmalzer, 630/252-7723,
– Basic and Applied Research
– Technology Research and Development
– Market, Resource, and Policy Assessments

Transmission and Distribution
John Hull, 630/252-8580,
– System Components
– Energy Storage
– Distributed Generation
– Data Gathering and Analysis
– Biological Effects

Energy Systems and Components Research
Richard Valentin, 630/252-4483,
– Component Reliability
– Sensors
– Systems Analysis

Materials Science and Technology
Roger Poeppel, 630/252-5118,
– Materials Characterization
– Modeling and Performance
– Advanced and Environmental Materials
– Materials Properties
– Superconductivity

Fuel Cell Research and Development
Walter Podolski, 630/252-7558,
– Fuel Processing
– System Design, Modeling, and Analysis
– Testing
– Energy-Use Pattern Analysis

Advanced Concepts in Energy Storage
K. Michael Myles, 630/252-4329,
– Secondary Batteries
– Ultracapacitors and High-Power Energy Storage
– Flywheels
– Superconducting Magnets

Information Technology
Craig Swietlik, 630/252-8912,
– Computer Security and Protection
– Independent Verification and Validation
– Information Management
– Advanced Computing Technologies

Environmental Science and Technology
Don Johnson, 630/252-3392,
– Environmental Characterization
– Process Modifications
– Emissions Controls
– Waste Management
– Site Management

Environmental and Economic Analysis
Jerry Gillette, 630/252-7475,
– Electric System Modeling and Analysis
– Risk Assessment and Management
– Environmental Assessment
– Cost and Economic Analysis
– Legal and Regulatory Analysis

Decontamination and Decommissioning
Tom Yule, 630/252-6740,
– Operations
– Technology
– Technical Analysis

End-Use Technologies
William Schertz, 630/252-6230,
– Plasma Processes
– Ultrasonic Processing
– Electrodialysis Separation Processes
– Recycling Technologies
– Aluminum and Magnesium Production

Thermal Energy Utilization Technologies
Kenneth Kasza, 630/252-5224,
– Compact Heat Exchangers
– Ice Slurry District Cooling
– Advanced Thermal Fluids

For information on working with Argonne, contact Paul Eichamer, Industrial Technology Development Center, Argonne National Laboratory, Bldg. 201, 9700 South Cass Avenue, Argonne, Illinois 60439; phone: 800/627-2596; fax: 630/252-5230,