Short Subjects


New Features on http://www.UFTO.COM

*Scroll to the bottom of the home page, and click on
“Recommended Reading & UFTO EXTRAS”
*Note the link at the top:
“For a list of newsletters and publications regularly scanned by UFTO, click here.”
Any new ones to suggest?


See below for these items:

*Cleantech Venture Network Issues First Report
*IEEE 1547 Interconnection Standard Passes Ballot
*Army Venture Capital Fund
*New Report on Energy Storage
*New Model to Analyze Distributed Power Projects
*Sag Line Mitigator — EPRI TC proposal


Cleantech Venture Network Issues First Report (See UFTO Note, 26 Jul 2002)

The first Cleantech Investment Monitor was released last week. It reports that investments in “clean” technology companies – ranging from fuel cells to water purification systems exceeded US$500 million in the first half of 2002, more than doubling from Q1 to Q2.. It also lists company investments made during the quarter, and profiles selected companies and investors. Download (27 pages) at:

Also the website has much more to offer now, including investor membership sign-up (options include Forum, Deal Flow, and Investment Monitor). Plans for the first venture forum (Toronto, Nov 13-14) are proceeding well. Over 40 companies have applied, and 15-20 will be selected to present.


IEEE 1547 Interconnection Standard Passes Ballot

The IEEE P1547/D10 Draft Standard for Interconnecting Distributed Resources(DR) With Electric Power Systems(EPS) received 90% affirmatives in the ballot that closed September 26, 2002.

Separately, the Standards Board approved new numbers for the three new working groups. Next meeting are in San Francisco October 8-10: (see UFTO Note 09 Sep 2002)

–P1547.1 (formerly P1589) – Draft Standard for Conformance Test Procedures for Equipment Interconnecting DR with EPS
–P1547.2 (formerly P1608) – Draft Application Guide for IEEE Standard 1547 for Interconnecting DR with EPS
–P1547.3 (formerly P1614) – Draft Guide for Monitoring, Information Exchange and Control of DR Interconnected with EPS.


Army Venture Capital Fund

Clearly modeled after the CIA’s In-Q-Tel fund (, the U.S. Army issued a Broad Agency Announcement (BAA) to solicit proposals for the operation and management of a not-for-profit, Venture Capital Corporation (VCC). The objective is to improve the business relationships between the entrepreneurial community of high technology innovators and the U.S. Army. This is expected to accelerate the transition of innovative technology into the Army by creating greater awareness on the Army’s part concerning commercial technology development and in the entrepreneurial community concerning the Army’s potential as a technology customer willing to accept innovative solutions to its requirements. The focus initially will be on companies and programs developing power and energy technology applicable to the requirements of the individual soldier.

The BAA was issued Aug 29, and the deadline for proposals was just extended from Sept 30 to Oct 15. UFTO will follow this story with great interest. (I am advising a local VC firm who plans to submit a proposal.)


New Report on Energy Storage

“Energy Storage: The Sixth Dimension of the Electricity Value Chain”, by Richard Baxter and Jason Makansi, of PearlStreet, Inc.

The report focuses on understanding potential business opportunities and developing long-term market strategies, describing the leading storage technologies (including pumped-hydro, compressed air energy storage, regenerative fuel cells/flow batteries, sodium/sulphur and lead acid batteries, superconducting magnetic energy storage, flywheels, thermal, and hydrogen systems), existing installations, and current market leaders. The 230-page report also includes 87 tables, market insights from leading industry thinkers, outlines of market applications including ancillary services and their impact on existing industry participants, a review of state and regional business opportunities, and forecasts of the impact on the US economy. (20% discount til 30 Nov). For details:

Contact: Richard Baxter,, 617.320.0598

In 2002, Pearl Street founded the Energy Storage Council, a non-profit organization formed to support the energy storage community in its effort to accelerate the introduction of energy storage systems and technologies into the marketplace.

[Note that the Electricity Storage Association’s next meeting starts this Thursday Oct 10 in Milwaukee.]


New Model to Analyze Distributed Generation Power Projects

Competitive Energy Insight (CEI) in San Diego is offering a new tool for the evaluation of DG projects, based on a model they developed for utility and other large scale power plants. EconExpert-DG is a financial model for the complete before and after tax financial analysis of DG and “Inside-the-Fence” cogen projects. The model can be used to evaluate and make decisions on virtually any DG Project or Technology, allowing owners, investors, developers and equipment suppliers to better understand the economic benefits and risks of self-generation. A suite of automated sensitivity functions make it easy to evaluate how changes in current project costs or future market conditions will impact their investment decision. The model also includes many automated analysis functions and on-line help features. The User’s Manual can be downloaded from CEI’s website.

CEI’s EconExpert-LP (for Large Power) is a similar tool for Central Power Station and Merchant Power Projects.

A 30 day free trial is offered to qualified parties. CEI’s website provides additional details and can be reached at:
http://www.CEIInc.NET or www.EconExpert.NET

or contact :
Steve Provol, Competitive Energy Insight, Inc.


Sag Line Mitigator — EPRI TC proposal

UFTO has been following this story for a long time, and they’ve made tremendous progress. [Summary: SLiM reacts to increasing conductor temperature by decreasing the effective length of conductor in the span. This mitigates the natural thermal expansion experienced by the conductor during high temperature operation. The impact is to decrease line sag during such operations.] For a good overview, download this pdf file:

The initial test program went very well, and now plans are underway for utility demonstrations, under an EPRI tailored collaboration project (open to members and nonmembers of EPRI). The project will evaluate the performance of SLiM on three operating transmission lines, and will provide participating utilities with first-hand information on the operational performance of this new kind of line hardware device. For a description of the proposed TC, download:
Manuchehr Shirmohamadi, 510-594-0300 x202,
or Ram Adapa, EPRI project manager, 650.855.8988,

IEEE 1547 Interconnection Working Group

Subject: UFTO Note – IEEE 1547 Interconnection Working Group
Date: Sat, 16 Feb 2002

IEEE SCC21 Working Group
(P1547 Draft Standard For Interconnection)
31 Jan -1 Feb 2002, Arlington, VA.

Held in conjunction with the DOE Distributed Power Program Review [covered in a separate UFTO Note]

Officially established by IEEE Standards and integrated into SCC21, the P1547 project was launched 4/99, and the Working Group (WG) has been on a fast track ever since to get a standard written and accepted by stakeholders in a wide-open consensus process. Relentlessly, meetings have been held 4-6 times a year, around the country.

Complete documentation of 1547 activities can be found at:

An excellent overview and current status as of last Oct can be found in a paper by Dick DeBlasio in the proceedings of the IEEE T&D Expo 2001 (Atlanta). [I have the pdf.]

In the last year, Draft #7 was voted on in March, and #8 by a ‘recirculation’ ballot in October. The voting showed interesting patterns; in particular utilities were divided right down the middle. Other constituencies are clearly in favor. There were two huge flurries of email among WG members debating various points, one just before the Oct ballot, and again just before this meeting. The goal now is to complete Draft #9 and to have a successful ballot on it.

Chairman Dick DeBlasio’s introductory remarks* and charge to the group outlined a key source of the problem–a long list of issues which are most likely not appropriate to deal with in a Technical Standard are nonetheless being brought up repeatedly. People with reservations about impacts on the grid, penetration levels, contractual issues, etc etc. continue, sincerely or otherwise, to raise and debate these issues in the WG. There was also a red herring over a minimum vs. maximum standard — opponents claimed that once enacted 1547 could only be made less restrictive and not more — the truth is that IEEE standards invariably undergo revision time and again, before the ink is dry. A cynic might wonder how much of this concern is sincere, how much is due to misinformation, and how much is simply raw tactics to block DG.

Another complicating factor for the 1547 effort–it is the very first case under IEEE’s newly introduced “open balloting”. This means that any IEEE member can jump in fresh to the process and cast a vote without having been involved in previous discussions. Standards committees have long endured repeat dialogues covering ground that’s been dealt with before, but ballots with anyone able to vote is much more problemmatic.

* This agenda document has the remarks which explain the approach:
* Also see the middle section of Dick’s presentation to the DPP meeting:

New Working Groups

IEEE Standard making recognizes the difference between “shall” and “should” and “may”, and produces three types of documents: Standards, Recommended Practices, and Guides, which reflect these different levels of influence. As many of the issues being piled on to 1547 are more appropriately dealt with the second or third type rather than the first, two new working groups have been established and a third has been proposed. The idea is to strip out of 1547 anything that belongs in a different document, e.g. procedures, applications guidance, safety, etc. (In sheer size, 1547 drafts began at over 500 pages; it’s been shrinking but it’s still far above a length appropriate to a IEEE Technical Standard.)

– IEEE SCC21 P1589 — Draft Standard for Conformance Tests Procedures For Equipment Interconnecting Distributed Resources With Electric Power Systems
– IEEE SCC21 P1608 — Draft Application Guide For “IEEE Draft Standard 1547 Interconnecting Distributed Resources With Electric Power Systems”
– Potential new SCC21 PAR for DR communication/control

(P1589 is also a Standard, but it separates issues of testing from the Standard itself. The numbering may be changed to 1547.1, 1547.2 and 1547.3, to reinforce the association among them.)

After DeBlasio’s opening remarks, the opening session of the WG meeting continued with presentations on the new initiatives. Each of these new working groups are recruiting members at the present time.

P1589 (1547.2) Standard on conformance testing will specify the types of tests to be done to demonstrate compliance with 1547.1, in particular at the factory producing equipment and at commissioning. (It would not deal with post-installation testing, which is a matter between business parties involved in a particular setting.) Contact Jim Daley, 973-966-2474,

P1608 (1547.3) Guide is to facilitate use of 1547, by providing characterizations of DG technologies. The development of this document will draw on dozens of existing resources, including 1547 resource materials, the 1001 IEEE standard for storage technology done in the 80’s (and withdrawn in ’98), various state procedures, utility handbooks, and other materials from EEI and EPRI. Contact Dick Friedman, 703-356-1300,

New Comm/Control (1547.3) Guide will cover equipment and systems for both remote on onsite monitoring and control of DG, supporting a wide variety of transactions among any DG stakeholders. It will include CHP and coordination with building or enterprise energy management systems. Contact Frank Goodman, 650-855-2872,

Back to Draft-Writing

The rest of the first session saw the start of a difficult process of reviewing Draft #8, section by section, going over suggested changes, and deciding which materials could be moved into one or the other of the new documents. It recalled the old saying about laws and sausages, with the added fun of wordsmithing by (very large) committee.

Over the next day and 1/2, significant progress was made, with lots of material removed from the Technical and Test sections and the appendices, for inclusion in 1589 and 1608. A “strawman” for Draft #9 is set for the writing committee to tackle in the next two months. (It was also announced that there will be some adds and drops to the writing committee roster.) A full WG meeting in June will, it is hoped be followed soon with the ballot.
Contact: Dick DeBlasio, 303-384-6452,
Tom Basso, 303-384-6765,

(For background about the start of this effort, see:
UFTO Note – IEEE Stds for DR Interconnection, 09 Jul 1999)

DOE Distributed Power Review

DOE Distributed Power Program
& IEEE Interconnection Working Group

29 Jan ?1 Feb 2002, Arlington, VA.

-Tue/Wed = DOE Distributed Power Program
-Thur/Fri = IEEE SCC21 Working Group [Covered in a separate UFTO Note]
(P1547 Draft Standard For Interconnection)

Distributed Power Program Review

The DPP website has the proceedings (and pdf downloads) for this meeting, and also for the last review meeting held in Golden CO, Oct’01. (box in upper right corner.)

There is a requirement at DOE for “peer review”, so we’re seeing many of these meetings throughout the year. Last fall there was one for Distributed Energy Resources Program (DER), which includes the Distributed Power Program. (This confusing bit of terminology will be cleared up soon with a name change of the latter to something more accurately reflecting the focus on integration of DR in power systems, not DR itself.) OPT is the new entity formed last year to pull together a number of activities from across EREN.

Here is the line-up of these groups on the org chart:
– EREN — Efficiency and Renewable Energy
– OPT — Office of Power Technologies
– DER — Distributed Energy Resources Program
– DPP — Distributed Power Program [name to change]

^^The DER Review was held in DC, 28-30 Nov 2001

^^Proceedings of the 2001 Hydrogen Program Review are posted at:

Other upcoming review meetings:
^^Hydrogen and Fuel Cells — Denver, 6-10 May
(We may try to combine this with an UFTO visit to NREL)
^^Microturbine and Industrial Gas Turbines — Fairfax VA, 12-14 March


Presentations- Introductions and Overviews

Bob Dixon, head of OPT, opened the conference, commenting that September 11 is the main driving force in Washington. Energy security is a high profile part of it, which translates into redoubled interest in DG.

Bill Williams, IEEE-USA government liaison, outlined the many bills in Congress that deal with interconnection at both the bulk and DG level. He also noted that FERC has opened a rule-making for interconnection under 20 MW. (see below).

Richard Brent, Solar Turbines, pleaded the manufacturers’ concerns about there being different policies at every utility, in every state–sometimes different within the same utility. Many of these practices are still based on utility systems and technology of long ago.

Patricia Hoffman, head of DER, commented that just as with any infrastructure, the energy system needs to advance and evolve. One of the roles of DOE is to help bring consistency.

Joe Galdo, who leads the DPP Program, explained DPP’s mission to remove barriers to DG that arise from technology and regulation. The goal is to reduce installation cost, delay and hassle. The strategy is reflected in the array of projects supported, from the IEEE 1547, to system integration, interconnection and control, to institutional and regulatory barriers. A list of subcontracts awarded to date appears at:
See also “Research Activities” for a good overview:

Presentations – Technical Interconnection Standards and Testing

— First up, Dick DeBlasio gave an update on IEEE 1547. See separate UFTO Note on the Working Group meeting.

— Murray Davis of Detroit Edison reported on a study of penetration limits for DG on a distribution feeder. This ranks very high on the list of concerns about widespread deployment of DG. (Davis started with a quick aside that there would be no limit if grids were isolated–he’s submitted a paper to IEEE about this.) They did detailed modeling of two actual feeders using ASPEN and the Distribution WorkStation, and then modeled the impact of various amounts of DG placed at various locations. The striking conclusion, at least for these two particular feeders and for the two variables considered, is that DG penetration (or stiffness ratio, i.e. the amount of the DG compared to the size of the feeder) had no predictive value for when problems (e.g. over/under voltage) would arise. The line length, circuit particulars, and DG device sizes were far more significant. A feeder could accommodate as much as 10 times more total DG if it comes as many small units instead of 1 big one.

— NRECA has an aggressive program to support its members to do fuel cell demonstrations, with training, handbooks, databases, and a users group. Coops view DG as “a solution, not as a problem”. Together coops represent the largest “single” utility in the country, with 34 million customers in 46 states. The handbook will be available on the DOE website in the near future, and many more resources are available only to members of NRECA.
Contact Ed Torrero, 703-907-5518,

— DUIT — Distributed Utility Integration Test – This project is to come up with a plan, including a facility, to do testing of the interaction of DG with the electric system. A key element is the selection of a site or sites for the facility. To that end, a number of sites around the country at utilities and universities were evaluated as candidates. In addition, the Nevada Test Site received particular attention, in view of the extensive inventory of pre-existing buildings and equipment. (The NTS study came up with a conceptual design of a large “pole field” to be used to simulate actual distribution feeders. Rows and rows of utility poles could be patched together to provide everything from a single 30 mile feeder to countless different configurations.) (The DER Test Facility at NREL, which evaluates performance of DG interconnection systems, became operational Dec’01)
Contact Joe Iannucci, Distributed Utility Associates,, 925-447-0604.

— Certification Lab Pilot — EPRI-PEAC’s project is to define a path to “certified grid-compatible DER”. They’re writing an accreditation plan and an interconnection handbook. The effort includes actual testing of interconnection standards. For details, see the pdf download^^^, and:
Contact: Tom Key, 865-218-8082,

— UL Standard for DG – Underwriters Lab is developing a standard for testing DG equipment, combining appropriate safety requirements with interconnection requirements from IEEE 1547, to produce a DG ANSI Standard that can be used to evaluate utility interconnected DG products for both electrical safety and utility interconnection to address the needs of Electrical AHJs and Utility Interconnection Engineers. This document will be UL 1741, The Standard for Inverters, Converters and Controllers for Use In Independent Power. Contact Tim Zgonena, UL, 847-272-8800 ext. 43051,

Presentations – Codes and Regulations

— Regulatory Policy Options for DG — The Regulatory Assistance Project (RAP) is a non profit that educates and helps state regulators with electric utility regulation. With DOE funding they’re developing a series of issue papers and prototype standards documents for states to use as templates or starting points for DG interconnection, emissions, etc. One interesting observation: RAP suggests that restructuring can actually works against DG, when wholesale markets (ISOs) don’t offer payment for demand reduction, and distribution-only companies become more susceptible to revenue loss. The website has a wealth of material. Of particular interest, policy papers on DG and Electric System reliability, cost methodologies, customer value, and “Accomodating DG in Wholesale Markets”. Particularly note the Draft of a “Model DG Emissions Rule” which is getting a lot of comment. DOE is looking for more input from industry.
Contact: Cheryl Harrington, 207-582-1135,

— DG and FERC – Dan Adamson has done a detailed report on FERC’s role in DG, including policy directions and numerous cases that have come up over the last 10 years or more. Expect increasing complexity and litigation. Adamson believes that FERC has the authority to assert jurisdiction over interconnection of DG no matter how small, if it involves wholesale transactions, but not retail or self-generation. Last October, FERC announced an ANOPR on generation interconnection. On 11 January, consensus drafting groups submitted a lengthy filing, with big disagreements between transmission owners and small generators. A new strawman proposal was due Feb 1. Expect a NOPR for comment soon; FERC hopes to issue a final rule later this year. Even if FERC does get jurisdiction, they don’t have the staff expertise or resources to regulate at the distribution level, and will likely look to the new RTOs do handle the details. States will still have a big role in any case. And, many bills are before Congress; how they’d interact with FERC’s efforts needs to be watched closely. (There is a case before the Supreme Court that may decide much of this issue.

A detailed report will be made available soon on the DOE/DPP website. See more information at:
Contact: Dan Adamson, 202-508-6600,
Also, go to the source:
[Sign up for FERC’s “intranet” to see more details. Of note–most utilities’ participants seem to be in transmission or regulatory affairs… is your DG effort in the loop?]

— Local Permitting – This presentation gives a sobering picture of the situation at the local level. There are over 44,000 independent building inspection jursidictions. It can take 10 years or more to get a new technology mentioned in codes, and even then it is up to states which vintage of a code it wants to use. (For example, Nevada still uses the 1978 Electrical Code!?) Most Fire and Building inspectors have little or no experience or understanding of hydrogen, methanol, fuel cells, etc. so developers can have a tough time. DOE is sponsoring an Education and Outreach effort, doing workshops around the country for local inspectors and state officials. Contact Ann Marie Borbely-Bartis, 202-586-5196,

******** Late Breaking News ******
NARUC passed a resolution this week (13 Feb) to support development of a Model DG Rule — See below for particulars. — I can also send the actual text of the resolution on request.

Presentations – System Integration and Control

A series of ongoing projects address implementation and hardware, including demonstrations of whole building systems, enterprise-wide generation management, and aggregation of DG. Others are developing new hardware to increase capabilities, reliablity and cost-effectiveness of interconnection systems. [As this note is getting a bit too long–please see proceedings for the individual presentations, or contact me to discuss.]

Presentations – Industrial DG

This series of projects involve actual installations or market studies of individual industry sectors. Others addressed market potential in NY, CA and Chicago.

– Increasing the Use of DG in the Semiconductor Industry
Barry Cummings, Salt River Project
– Highly Varying Industrial Load
Dr. Robert Kramer, NiSource
– DG Integration with Telecommunications Facility
Doug Peck, Syska & Hennessy
– CHP Integration with Fluid Heating Processes in the Chemical and Refining Sectors
– CHP Installation at 29 Palms Marine Air Ground Combat
Henry Mak, So Cal Gas
– DG Improvements in Industrial Applications
Rich Biljetina, Industrial Center
– Chicago Industrial Energy Plan
John Kelly, Gas Technology Institute
– New York State Industrial DG
Nag Patibandla, NYSERDA
– Industrial DG Market Transformation Tools
Paul Bautista, Onsite Sycom

Naruc Adopts Resolution Endorsing Development of Model Interconnection Agreements and Procedures

Washington, February 13, 2002
The Board of Directors of the National Association of Regulatory Utility Commissioners (NARUC), this week at the NARUC 2002 Winter Meetings in Washington, D.C., endorsed the development of model interconnection agreement and procedures under the direction of its Committees on Electricity, Energy Resources and the Environment and Finance and Technology. Reiterating its support for open access to the nation’s electricity grid, and the importance of distributed energy resources to our energy future, NARUC noted in is resolution (attached) that:

– Coordination among the States could improve the consistency of treatment so important to the efficient integration of distributed energy resources; and

– Increased national consistency would lower entry barriers and enhance business economic efficiency, and,

– The ready availability of NARUC developed model agreements and procedures will aid in balancing those concerns; and the preparation of model interconnection agreement and procedures by NARUC could provide significant support and

– Efficiencies to those States which have yet to address the challenges of distributed energy resources, and the consideration, adaptation or adoption of such models could provide material assistance in achieving the coordination among the states called for by previous resolutions.

The DOE DPP program has previously support state commissions in their efforts to address the new challenges presented by integrating distributed generation into their energy system, and has been supporting this new initiative. The issue was timely at NARUC because of the FERC’s ongoing inquiry into developing a national rule setting forth interconnection procedures and a standard agreement for FERC jurisdictional interconnections, typically at the transmission level. Some controversy may develop where both state commissions and FERC assert jurisdiction of interconnection issues at the distribution level. For additional information contact Gary Nakarado, DP Program NREL, 303-275-3719 or Gary_Nakarado@NREL.Gov

EPRI Distributed Resources Venture Forum

— Business Venture Forum for Emerging Distributed Resources Technology Companies, Investors, and Market Channels
— 7/25/2001 – 7/26/2001

Agenda download is still available:

EPRI solutions’ Second Annual Business Forum was designed to bring together leading Distributed Resource (DR) technology companies, the energy utility industry, and energy industry investors for the exchange of information related to business and investment opportunities. The Forum was structured as a venture fair with 15-minute presentations from 13 leading DR companies, followed by an afternoon of “breakout” sessions, for small group/individual meetings with the company representatives.

EPRI will issue a CD with all the presentations. Most were provided in hard copy in a binder. Additional company materials were selectively provided at the breakout sessions.

We’ve seen a number of the presenting companies before, as they’ve appeared at other similar events over the last couple of years. Side conversations also led to some interesting additional leads.

These notes are intentionally brief. If you’re interested in contacts or more details for any of these companies, let me know.


Dais Analytic – yet another small company pushing PEM. Distinctions include “great” reformer technology, about which nothing was disclosed, and a proprietary membrane material. The membrane is the subject of a major JV with a major chemical company (unnamed), and holds great promise in an air-to-air heat exchanger, MERV, which exchanges not only heat, but also water vapor. MERV greatly reduces heating and A/C loads by preconditioning incoming fresh air. This company’s “dual” play is either appealing or not, depending on your investment philosophy (and your view of PEM’s prospects). MERV appears to offer prospect of early real revenues while awaiting PEM to ripen. On the other hand, it’s two different businesses, which can be hard for a small company to do effectively.

Candent Technologies – a brand new stealth (til now) arrival on the microturbine front. Very experienced personnel coming out of Rolls Royce, (which decided not to do a microturbine) take a different design approach, and will target a 750 KW unit size, eventually as low as $350/KW. They specifically are avoiding the use of recuperators, as expensive and unreliable, and will use a high pressure spool instead. No new technology is involved, so they’re projecting a rapid development, direct to beta pre-production stage, skipping a prototype. Looking for $3 Million now, and $20 M in another round following demonstration.

PEPCo Technologies – GenerLink. Spinoff of PEPCo, selling an standby generator interface for homeowners. Said they have 2 investors that are going ahead (one is strategic, the other a VC). I have to agree with what I heard most people say– it’s hard to imagine there are very many people who would want this.

Pentadyne Power Corp. High speed flywheel, continuing development work by Rosen Motors. Targeting high power/short duration ride-through application. First units will be 120 KW for 20 seconds. Novel approach to safety containment using double shell with liquid in-between (originally conceived for onboard vehicle use, where heavy shielding is not possible). Claim very low standby loss/idling load, and low cost once in large quantity production.

Powerco US/Ocean Power — a new private marketing arm, formed as subsidiary to Ocean Power (NASDAQ PWRE). Initial focus on small stirling engine they acquired in Norway, but parent company has too many breakthrough technologies in its arsenal to believe, ranging from diesel CHP, dish PV, fuel cells…and they didn’t even mention desalination, another area they claim to have cornered.

Ceramic Fuel Cells Ltd — Solid Oxide FC contender in Australia that appears quite credible. In the breakout session they showed a new all-ceramic stack configuration that is looking very promising. Market entry product is a 40 KW generator, to operate on straight methane (SOFC is autoreforming, so no fuel processor needed).

BCS Technology — a tiny company from Texas, founded 1990, with “self-humidified” PEM fuel cell stacks and MEAs. They’ve sold over 100 small stacks.

ALM Turbine — This company looked overly ambitious when they started raising money 1-2 years ago, but they say their progress is on track. Their first engine is just about ready for tests, and preliminary emissions data for their burner technology is promising. Their engine is completely scalable in size, from 25-350 KW, and they claim high efficiency, and high part load performance. Design relies heavily on exhaust gas recirculation.

Sixth Dimension — Until recently, it was difficult to understand what this company did, but they’re doing better at explaining it now. They’re a “network operating system” for communicating with any/all types, brands etc of energy producing, consuming and monitoring devices, e.g. meters, gensets, building control systems, energy analytics systems, etc. They put a “gateway” box on site which they call “Embedded Site Server”, to which 16 devices can be connected. Each device gets a smaller box called the “Power Tone Adapter” which can be outside or inside the device. The system of proprietary hardware and software makes possible all manner of clever monitoring and control functions. This sounds like what Encorp says, but they say Encorp can only do these things if you have Encorp switchgear. 6th is far more equipment-agnostic.

Alternative Designs Inc — ADI has unique stirling engine technology enabling operation at much higher temperatures, attaining efficiencies of 50% and greater. Other enhancements include an advanced regenerator, and simplified heater head design, leading to big cost reductions and higher reliability. [I am an advisor to this company.]

DayStar Technologies — Unique PV cell technology. Company first developed a “flat-plate concentrator” technology that was clever and intriguing, but would require extensive capital development. DayStar is now focused primarily on their own cadmium-telluride “thin-film-on-metals” solar cells. The cells are manufactured in sheets, which can be used whole, or cut into cells which can be a direct “replacement” for Si cells, at half the cost.

Rolls Royce — as noted above, RR decided not to pursue a microturbine development, despite having invested quite a bit of money in it. Instead, they’re going for a special purpose turbine to be combined with their own planar SOFC. Program began in 1992. This 1 MW hybrid is to be ready by 2005. RR will fund most of the program internally, but will seek strategic partners for funding, and technical/marketing support, leading to a possible spinoff company.

Vanteck(VRB) Technology Corp. — (public company, CNDX symbol VRB ) commercializing the vanadium redox battery technology, and in particular VESS, for Vanadium Energy Storage Systems. The company is in the midst of straightening out a particularly messy history of corporate ownership of IP and market rights, but assuming that can be done, are focusing on the US market. This is flow-battery has some uniquely attractive features, including high round trip efficiency, and freedom to size a system’s power (KW) and capacity (KWH) separately (either aspect can be added to over time). In concept, this is very similar to the Regenesys battery, but with different chemistry, and targeted at smaller systems. The first commercial installation outside Japan is starting up now — a 250 KW/ 520KWH unit at ESKOM, in South Africa.

Fuel Cell info; DOE DP Program

In the Jan 23 UFTO Note about the Fuel Cell Seminar, several sources of information on Fuel cells were provided. Here is some additional clarification of how four separate publications are related.

Fuel Cells 2000 is an activity of the Breakthrough Technologies Institute (BTI), a non-profit organization formed to promote the development and early commercialization of fuel cells and related pollution-free, efficient energy generation, storage and utilization technologies and fuels.

They publish “Fuel Cell Connection”, a monthly sponsored by USFCC, NFCRC, and NETL
(subscribe at
This will also get you the quarterly “Fuel Cell Catalyst”, (the Winter 2001 issue arrived this afternoon) and access to back issues:

Fuel Cells 2000 also publishes and distributes its own monthly “Technology Update”, summarizing recent events in the fuel cell industry

And, they publish “Fuel Cell Quarterly” — subscription requires a paid contribution of $25 or more.

All of the above mentioned organizations have extensive websites with lots of documents, links, lists, etc.


The January 2001 issue of Fuel Cell Connection arrived today, with 28 separate items. Here are two that are noteworthy.

9. NREL Establishes Center for Distributed Power
National Renewable Energy Laboratory (NREL) has established a new “Distributed Energy Resources Center” to conduct research and provide information needed to efficiently develop additional power supplies from small, decentralized generating units. Research on fuel cells and microturbines will fall under the “Hydrogen and Natural Gas Systems” section of the center.

10. Guide to Doing Business with DOE’s National Laboratories Now Available
The Laboratory Coordinating Council of the DOE has prepared a guide to “Doing Business with the Laboratories of the Laboratory Coordinating Council. (LLC)” The guide is available online through the DOE Office of Industrial Technologies.

Even though the “LLC” is focused specifically on the Office of Industrial Technologies, this new document appears to be a good new resource about the whole subject.


Speaking of Distributed Power and NREL, the DOE program is really taking off.

On December 4, 2000, DOE released its “Strategic Plan for Distributed Energy Resources,” (dated September 2000) which outlines a national effort to develop clean, reliable and affordable distributed energy technologies over the next two decades. The goal of the plan is eventually to allow industrial, commercial and residential customers to choose from an array of distributed energy resource products and services. The Strategic Plan will focus initially on developing “next-generation” distributed energy technologies and addressing the institutional and regulatory barriers that interfere with the development of dis-tributed energy resources. The DOE also outlined six separate strategic areas it plans to address in the near future.

“The Strategic Plan for Distributed Energy Resources” can be found on the Internet at
(Generally thislast website is the one to pay attention to.)

The DP Program Review meeting was just held the week before last in Washington. Very soon I hope to be able to pass along detailed notes from the NREL folks who are handling the website.

Travel Reports

In September, I attended these three conferences. They were all different, but also had a great deal in common. This writeup attempts to capture major themes and to provide highlights of some of the more interesting developments that came to light. Please don’t hesitate to let me know if you’d like further details on anything discussed below (or anything you see on the agendas that I didn’t mention).

EESAT Electric Energy Storage Applications and Technologies Conf.
Sept 18-20, 2000, Orlando, FL

Distributed Power Strategies and Business Opportunities
Sept 25-27,2000, Washington, DC

Clean Energy Roundtable
Sept 27-29, 2000, Aspen, CO


One major common theme–

“Attack of the Killer Investment B’s”

Many investment banking firms are cranking up bigtime to get a piece of the action in high9s-clean-distributed energy technology. They’re starting to “get it” and don’t want to miss out, though there’s a lot they don’t know about it (and their in-house utility analysts aren’t much help). They’re attending these events in ever increasing force, and also putting on their own!

BofA Securities, CIBC World Markets, Robertson Stephens, First Albany, Deutsche Banc Alex Brown, Morgan Stanley, Goldman Sachs, Lehman … They’re issuing research reports, initiating coverage, and investing in and pushing services to companies in this industry. Not only are they coming to energy conferences, they’re putting on their own, usually invitation-only for clients and other investors.

– Goldman Sachs will be handling Powercell’s (zinc-bromine flow battery) next financing, following a recent $30 Million infusion from a variety of investors.

– Credit Suisse First Boston is acquiring DLJ, which is doing a private placement for ZBB (the other zinc-bromine flow battery).

– Bear Stearns, famous for their very popular 250 page research report, “Distributed Energy Services” back in April, is coming out with one on microturbines in the next couple of weeks, with more to follow.

– Beacon Group, recently acquired by Chase H&Q, has been actively doing energy technology investments alongside their extensive array of more traditional energy sector plays.

– Price Waterhouse Cooper is helping STM (stirling motor) to raise $4M each coming from a coalition of DTE, Delco Remy, Ricardo (engine consultants) and a group from Singapore, to be followed in the near future with a probable private offering.

The main drivers behind all this excitement include deregulation/competition, demand for premium power, environmental concerns (new regs, Kyoto, etc.), and technology advances (renewables, distributed resources, and the internet). Add to that the general supply crunch here and abroad. While there are some aspects of the investment “flavor of the month”, these trends are seen as real, irreversible, and significant.

Traditionally, development stage companies are financed by venture capital or corporate money. Now, however, companies are going public earlier and earlier (“pre-earnings” and even “pre-revenue”). This means that retail investors are engaging in “public venture capital” as it has been called, taking on the higher risk of early stage companies.

Speaking plainly, there’s a bubble in the pre-ipo and public company stocks that is similar to what’s been happening in the dot-com world and elsewhere. The players are piling on, and both good and bad can come of it. While this industry enjoys all the attention and increased capital (and valuations), there will be a continual shaking out, with big winners and losers–as we’ve seen very recently. One just hopes the losers won’t put a drag on the whole sector.


Clean Energy Roundtable

This is one in a series of invitation-only conferences, many in Europe, targeting senior executives. The “Aspen Clean Energy Roundtable” meeting was the 7th annual such event, with many repeat attendees. A number of major energy companies, bankers, and NGO’s were represented, plus a sizable contingent from the DOE National Labs, but just a few utility people. Speakers are strongly discouraged from doing sales pitches, but rather to shed light on big trends and issues.

The biggest trend and issue — a widely held view that is an absolute necessity to come up with a “low/no carbon” energy future, in light of global climate risks and population growth and economic development. Furthermore, hydrogen is the key, as the main energy carrier of the future. There were a few visionaries who began talking about the potential of a “hydrogen economy” in the mid 70’s (during the first oil crisis). Maybe their day is coming.

Another prominent theme was the evolving role of government, from “Nanny” to enabler. Bruce Stram of Enron Energy Services spoke about this historic role of government, intervening heavily to cope with market imperfections, as less necessary as telecommunications and information flow improve. Instead, government should avoid “command and control” and instead punish social externalities with penalties, and support a vigorous R&D program.

Swiss Re reviewed their outlook that global climate issues represent huge risks to the insurance industry, noting losses from hurricanes and other weather-related damages. They’ve been very active promoting Kyoto, emissions trading, and clean development mechanisms.

Shell Hydrogen is a new independent business within the Shell group. CEO Don Huberts explained the parent company’s commitment to sustainable development (disposed of coal assets, and set up Shell Renewables and Shell Hydrogen). He described a 250 kW SOFC installation in Norway integrated with fish farming, use of an SOFC with injection of CO2 into depleted wells and deep aquifers, commercial and residential CHP with SOFC or PEM, and a proprietary natural gas processor to make hydrogen for residential fuel cells.

Valuing Renewables — Shimon Awerbuch of ICF Consulting reviewed his work on using a portfolio approach to valuing renewables. Traditional engineering-based approaches are completely inadequate–they ignore financial risk; they didn’t work in manufacturing (completely missed computers, robotics, and CAD); and they don’t work for high capital, low operating cost projects. Portfolio concepts are routinely applied in securities investment, where adding even a higher cost (lower return) investment to a portfolio can reduce the total risk, for an overall better result. See his articles Public Utilities Fortnightly, Feb 15, 2000, and Energy Policy (to be published)

Other presentations included:

CMS Energy is pursuing environmentally friendly technology solutions, including microturbines for gas field pumping operations, a methanol plant installed in Africa to eliminate a massive gas flare, and their own “virtual power plant” program they’re calling Elan (electric local area network).

Honeywell’s microturbine group sees their devices fitting into a seamless array of energy management systems, controlled over the internet in real time.

Stirling Energy Systems, in Phoenix, is gearing up to develop huge solar power farms using dish concentrators with the Swedish-made Kockums stirling engine.

H-Power is aggressively pursuing rural markets for their existing commercial small scale PEM fuel cell systems.


Electric Energy Storage Applications and Technologies Conf.

The message is similar to the June ESA meeting [See UFTO Note, 25 April, 2000]
–storage is coming into its own, as part of the boom in new energy technology, along with DG, renewables, premium power, etc. The complete proceedings will be published in hardcopy and on a CD, by early December.
Keynoter Bill Parks, the lead for DOE’s new Distributed Power effort, [UFTO Note May 31] noted the convergence of many issues, including growth (economic, population and energy demand), price spikes, high oil imports, power quality needs, air and water quality, and climate change. New companies are entering, and everyone proclaims to be green. On top of that, average energy efficiency in the US hasn’t improved, capacity margins are below 10%, and power infrastructure is aging. DOE’s expanded efforts will go beyond the core technology R&D emphasis, to deal with systems, and to address institutional barriers. For example, the IRS is reviewing depreciation schedules for CHP and DG.
Value of Storage – Tom Jenkin, Brattle Group, described an LP model they’ve developed to analyze in detail the arbitrage possibilities for a storage system. The model calculates the maximum net revenue over a one week period by optimizing the use of a generic storage device, hour by hour. At any given time, the device can do one of four things: charge (i.e. buy energy), sell energy, sell reserve capacity, or do nothing. Using price data for the California ISO, initial results suggest a capital cost of $250-$750/kW can be supported in this kind of application., 617-864-1576.
At EA Technology (UK), they’ve developed a model to calculate net present value cost-benefit of various storage technologies in various applications. Alan Collinson,
Regenesys, the National Power spin off, has announced their first commercial scale project (120 MWH, 15 MW) at a power plant in the UK. This is one of the prominent “flow” battery technologies discussed several times before in UFTO Notes. Notably, they have qualified it to provide blackstart, in addition to energy management, arbitrage, and frequency and voltage regulation. They also have an initial agreement with TVA to the first N American installation.
Tokyo Electric is getting good results with their advanced sealed Sodium-Sulfur battery. A key to safety is an innovative self-shut down mechanism where an inner tube expands if heated (by the reactions that would result from a leak) and blocks the ceramic electrolyte. A 6 MW, 48 MWH system has been operating since mid 1999, for load leveling and ancillary services.
AutoCap reported on the advantages of charging battery cells individually, greatly extending the expected life of batteries in large systems. When an entire string of cells are charged in series, due to variations some cells are overcharged and some undercharged. They’ve developed a system with an isolated charger, and a cell selector device that monitors and charges one cell at a time. This applies only to the maintenance charging, not the heavy recharging cycle after a discharge.
New Supercapacitor — there are countless stories around about ultracaps or supercaps. Many use low voltage aqueous electrolyte concepts, with extremely high surface area electrodes made of very porous materials, and utilizing the double layer effect. Though they can deliver unheard of capacitance in small packages (farads instead of microfarads), these cells have problems with high impedance and self-discharge. To reach any useful working voltage, cells must be put in series, and run into additional issues to do with voltage balance. According to tests of an 11,000 Farad unit at EPRI PEAC, a Russian company has a breakthrough concept involves an asymmetrical design, which solves these problems, and can deliver very high discharge rates over a wide temperature range, with high specific energy.
From the website:
“JSC ESMA electrochemical capacitors utilize a polar cell and aqueous electrolyte. The negative electrode is made of an activated carbon material having high surface area, where electric energy is accumulated at the electric double layer. The positive electrode is made of nickel hydroxide and designed for high charge/discharge rate. This combination of electrodes provides a 4-5 times increase in specific energy over capacitors designed with both electrodes made of a carbon material. The maximum operating voltage of the cells ranges from 1.3 to 1.6 V depending on the capacitor type and its operating mode. The capacitor is prismatic in shape, with a case made of plastic. It has a resealable safety valve in its cover to release gas during improper use when a certain value of excess pressure is reached. JSC ESMA capacitors have been designed to remain in service even if the operating voltage level is exceeded. Capacitor operating characteristics do not degrade if the capacitor is operated under an excessive voltage level over a short time. The capacitors can withstand a short circuit current caused by improper handling.”
Emitter Turn-Off Thyristor (ETO) is a new solid state switch developed at Virginia Tech that promises great improvement over GTOs and IGBTs. It is a hybrid based on the GTO and MOSFET. It is much smaller and simpler, it uses less drive power, and it is 10 times faster — it can turn off 3000 amps in 2-3 microseconds, vs. 30 for present devices. This speed will enable switches that can react to faults in time to safely turn off rather than relying on fusing. Virginia Tech is actively looking for licensees to commercialize the ETO. (I have pdf copies of the full paper and the patent application.)
Zinc Bromine Flow Batteries (ZBB & Powercell) Powercell’s standard unit is the PowerBlock, 100kW/100kWh, in one self contained package complete with power electronics, is in production. ( ZBB Technologies Inc. in Wisconsin is developing a larger utility scale version, with DOE funding. Two 400 kWh demonstration units are being installed on Detroit Edison’s system this Fall. Though based on the same original work at Exxon years ago, the two programs have important design differences.
Active Power, following on their very successful IPO, has a deal with Caterpillar, who is selling systems under the name CAT 250. This is a 250 KVA, 12 sec system. A price of $250-325/KVA was mentioned. Active Power has also recently built active harmonic filtering into the package. Duke Power reported on a demo installation at one of their customer sites.

Magnet-Motor (Germany) reported on their use of 2KWH/150 KW flywheels on public buses, ever since 1988. Company website:

Several programs are working on flywheels using superconducting magnetic bearings: the Shikoku Research Institute, Chubu Electric with Mitsubishi, and Boeing Phantom Works. This last one appears to have some resemblance to the earlier work at Argonne that was supported in part by ComEd. It is funded under the DOE Superconductivity Initiative.


Distributed Power Strategies and Business Opportunities
Sept 25-27,2000, Washington, DC

One of dozens of conferences on distributed power, this one had some big names and a high level of international participation, but no big announcements or new insights. As usual, the networking opportunities were at least if not more valuable than the sessions.
Ake Almgren, CEO of Capstone, was co-chair, with Mark Fallek of DTE Energy. In his opening remarks he noted that DG and central station plants are both needed, it’s not an either-or situation. DG can be thought of as another way to “distribute” power, not to “generate” it. Central station plants have a very long lead time, and difficult siting requirements. Also, T&D costs contribute as much as $4-500/KW to the price of power, which DG can avoid. Fallek cited some future global market estimates for DG of $38 billion/year. Premium power, now a $50 billion market, is growing at 30%/yr, suggesting $500 billion in 15 years.
Bob Shaw, who single-handedly invented venture capital in new energy technology, and who helped start many of the notable companies now making headlines, gave a perspective that was extremely bullish on DG and renewables, but a bit alarmed about the “bubble” situation. He is convinced that DG really will take over from central station power, sooner rather than later. DG is a perfect case of a “disruptive technology”. The engines built by US automakers every year are equivalent to the capacity of the entire US generating system. So, an industry 1/10 the size of Detroit could replace that system in a mere 10 years. The fact that VCs and Wall Street see energy technology as the “next big thing” is making capital available to this sector as never before, but it is also leading to unsustainable valuations that could become problematic. The paper is available online: I also have a copy of the powerpoint presentation, which provides some additional material.
“First, Second, or Third Coming??”
Is DG just a replay of one or two previous episodes, or very different this time? Shaw clearly espoused the latter view, but others were less convinced. In the 60’s, a midwestern gas company pushed a “total energy” concept based on reciprocating engines; maintenance problems and the poor suitability of recips to baseload operation proved the undoing. In the 80’s, the PURPA QF provisions led to a swarm of packaged cogen installations; QF contracts have all but faded from the scene. Shaw maintains that today’s convergence of developments is really different. Robert Swanekamp, editor of Power Magazine, took an extreme contrarian position that DG is a non-event, and that 1/2 of the large CCGT’s on order will be cancelled as a power glut emerges. He said he had no knowledge of the disruptive technology argument, but that didn’t stop him from dismissing it. (He was probably the only person present who hadn’t heard about Clayton Christensen’s ideas and their relevance to DG. See UFTO Note 19 April 1999; or
Technologies — there were a dozen or more presentations by companies: makers of fuel cells, stirling engines, and microturbines; power electronics, internet-based controls and energy management; and O&M.
Barriers — reports on the EEI and IEEE interconnection efforts; an excellent overview of competitive, institutional, regulatory and financial obstacles by Nat Treadway, (for a similar presentation, see

DOE Distributed Power Website

This new website just went live this morning. Looks like a good one. Happy reading!

This is the website of the DOE’s Distributed Power Program which is responsible for distributed resources’ system integration research and development. The site describes the Distributed Power Program and its activities, and provides information and current news about barriers to distributed power, policies and regulations, technical interconnection issues and upcoming events.

This unveiling was set to coincide with the long awaited release of the DOE “Barriers” study, by Brent Alderfer, Competitive Utility Strategies, which was discussed at the DOE DP Program meeting last October. (See UFTO Note – DOE Distrib Power Review & IEEE Interconnection Working Group; 12 Oct 1999.)

— Making Connections: Case Studies of Interconnection Barriers and their Impacts on Distributed Power Projects —

This study documents the difficulties faced by distributed generation projects seeking to connect with the electricity grid. The report examines the impact of interconnection issues on 65 distributed power projects. The case studies treated in the report clearly demonstrate that market barriers are real, and that they are, in part, an artifact of the present electricity industry institutional and regulatory structure designed for a vertically integrated utility industry relying on large central station generation. Given the findings, the report provides a ten-point action plan for reducing the technical, business practices, and regulatory barriers that may impede the deployment of distributed power technologies.

The full report is available for download as a pdf file:

IEEE DistGen Stds update

IEEE SCC21 P1547 Web Site Available:

(The first is the html home page, the second one is simply an archive file log.)

The site includes a P1547Background file, a P1547MeetingPattern file explaining meeting logistics, and folders for past and ongoing notices, agendas and minutes. (Meeting minutes “annexes” are not available electronically.)

The January 2000 meeting (Albuquerque NM) minutes have just been posted at the “archives” site. <>

The next meeting is April 26-27, 2000 hosted by Cutler-Hammer in Pittsburgh PA Next after that is June 7-8, 2000, hosted by Capstone Turbines in Los Angeles

Contact is: Tom Basso, 303-384-6765,

(For additional background, see:
UFTO Note – IEEE Stds for DR Interconnection, 09 Jul 1999)


In related developments: (February 10, 2000)

Sandia’s PV News: IEEE Interconnection Standard For Utility-Intertied Photovoltaic Systems Is Approved

An IEEE-sponsored working group has developed an interconnection standard that will simplify the process of interconnecting photovoltaic systems with an electric utility. Photovoltaics (PV) is a solar-electric technology that uses solid-state solar cells to convert solar energy to electric energy. Not only does this standard vastly simplify PV interconnection, but it is the first IEEE standard of its kind for allowing utility interconnections of non-utility-owned distributed generation equipment. The unique aspects of this standard include tightly-defined requirements for the interconnecting hardware that can be tested by an independent test laboratory such as Underwriters Laboratories. This removes former barriers to PV use throughout the country.

John Stevens, Sandia National Labs, chaired the working group, which included about 25 members representing the utility industry, the PV industry, PV inverter manufacturers and PV researchers. The effort was sponsored by IEEE Standards Coordinating Committee 21 (SCC21). It required a little over three years from initial announcement of the project to final approval by the IEEE Standards Board. Its value is that it provides a standard that PV interconnection hardware can be designed to, thus removing the requirement for specialized hardware for different utility jurisdictions. The standard includes very specific requirements for systems of up to 10kW, but it covers systems of all sizes. The IEEE PV interconnection standard, identified as IEEE Std 929-2000, is known informally as IEEE 929.

The standard actually applies to the PV inverter, the device that converts the PV dc energy into utility-compatible ac energy. Similar inverters are used in other distributed generation systems such as fuel cells and microturbines. Many of the requirements for interconnection that are described in IEEE 929 might also be adopted for these other technologies.

IEEE 929 provides guidance for operating voltage and frequency windows, trip times for excursions outside these windows, requirements for waveform distortion, as well as defining a non-islanding inverter. An important parallel effort was performed at Underwriters Laboratories where a test procedure, UL 1741, was written that will verify that an inverter meets the requirements of IEEE 929.

In support of the IEEE 929 process, several development projects were completed at Sandia that addressed interconnection issues. The performance of several inverters operating in parallel when a utility line is de-energized was characterized to better understand the potential for unintended operation during a utility outage (“islanding”). A control scheme was developed to assure that islanding doesn’t happen. A test was developed to allow testing of single inverters to identify the presence, or lack, of an adequate anti-islanding scheme. Several specific tests were performed at the request of some electric utilities to examine such issues as ferroresonance with inverters under fault conditions and response of inverter protection schemes to the non-sinusoidal waveforms that are sometimes associated with abnormal conditions on utility systems.

This working group was an outstanding example of people with different backgrounds working together toward a common goal — simplifying the interconnection procedure. IEEE SCC21, which is chaired by Dick DeBlasio of NREL, has sponsored numerous PV-related standards since its inception in the late 1970s.

For further information on this PV interconnection standard
contact John Stevens,
Sandia PV Projects (505) 844-3698 (phone) (505) 844-6541 (fax)