Posts

EPRI Distributed Resources Venture Forum

— Business Venture Forum for Emerging Distributed Resources Technology Companies, Investors, and Market Channels
— 7/25/2001 – 7/26/2001

Agenda download is still available:
http://www.epri.com/attachments/262909_FinalAgendaVentureforum.pdf

EPRI solutions’ Second Annual Business Forum was designed to bring together leading Distributed Resource (DR) technology companies, the energy utility industry, and energy industry investors for the exchange of information related to business and investment opportunities. The Forum was structured as a venture fair with 15-minute presentations from 13 leading DR companies, followed by an afternoon of “breakout” sessions, for small group/individual meetings with the company representatives.

EPRI will issue a CD with all the presentations. Most were provided in hard copy in a binder. Additional company materials were selectively provided at the breakout sessions.

We’ve seen a number of the presenting companies before, as they’ve appeared at other similar events over the last couple of years. Side conversations also led to some interesting additional leads.

These notes are intentionally brief. If you’re interested in contacts or more details for any of these companies, let me know.

— COMPANIES —

Dais Analytic – yet another small company pushing PEM. Distinctions include “great” reformer technology, about which nothing was disclosed, and a proprietary membrane material. The membrane is the subject of a major JV with a major chemical company (unnamed), and holds great promise in an air-to-air heat exchanger, MERV, which exchanges not only heat, but also water vapor. MERV greatly reduces heating and A/C loads by preconditioning incoming fresh air. This company’s “dual” play is either appealing or not, depending on your investment philosophy (and your view of PEM’s prospects). MERV appears to offer prospect of early real revenues while awaiting PEM to ripen. On the other hand, it’s two different businesses, which can be hard for a small company to do effectively.
http://www.daisanalytic.com/

Candent Technologies – a brand new stealth (til now) arrival on the microturbine front. Very experienced personnel coming out of Rolls Royce, (which decided not to do a microturbine) take a different design approach, and will target a 750 KW unit size, eventually as low as $350/KW. They specifically are avoiding the use of recuperators, as expensive and unreliable, and will use a high pressure spool instead. No new technology is involved, so they’re projecting a rapid development, direct to beta pre-production stage, skipping a prototype. Looking for $3 Million now, and $20 M in another round following demonstration.

PEPCo Technologies – GenerLink. Spinoff of PEPCo, selling an standby generator interface for homeowners. Said they have 2 investors that are going ahead (one is strategic, the other a VC). I have to agree with what I heard most people say– it’s hard to imagine there are very many people who would want this.
http://www.generlink.com

Pentadyne Power Corp. High speed flywheel, continuing development work by Rosen Motors. Targeting high power/short duration ride-through application. First units will be 120 KW for 20 seconds. Novel approach to safety containment using double shell with liquid in-between (originally conceived for onboard vehicle use, where heavy shielding is not possible). Claim very low standby loss/idling load, and low cost once in large quantity production.
http://www.pentadyne.com

Powerco US/Ocean Power — a new private marketing arm, formed as subsidiary to Ocean Power (NASDAQ PWRE). Initial focus on small stirling engine they acquired in Norway, but parent company has too many breakthrough technologies in its arsenal to believe, ranging from diesel CHP, dish PV, fuel cells…and they didn’t even mention desalination, another area they claim to have cornered. http://www.powerco.com/

Ceramic Fuel Cells Ltd — Solid Oxide FC contender in Australia that appears quite credible. In the breakout session they showed a new all-ceramic stack configuration that is looking very promising. Market entry product is a 40 KW generator, to operate on straight methane (SOFC is autoreforming, so no fuel processor needed). http://www.cfcl.com.au/content.htm

BCS Technology — a tiny company from Texas, founded 1990, with “self-humidified” PEM fuel cell stacks and MEAs. They’ve sold over 100 small stacks.

ALM Turbine — This company looked overly ambitious when they started raising money 1-2 years ago, but they say their progress is on track. Their first engine is just about ready for tests, and preliminary emissions data for their burner technology is promising. Their engine is completely scalable in size, from 25-350 KW, and they claim high efficiency, and high part load performance. Design relies heavily on exhaust gas recirculation. http://www.almturbine.com

Sixth Dimension — Until recently, it was difficult to understand what this company did, but they’re doing better at explaining it now. They’re a “network operating system” for communicating with any/all types, brands etc of energy producing, consuming and monitoring devices, e.g. meters, gensets, building control systems, energy analytics systems, etc. They put a “gateway” box on site which they call “Embedded Site Server”, to which 16 devices can be connected. Each device gets a smaller box called the “Power Tone Adapter” which can be outside or inside the device. The system of proprietary hardware and software makes possible all manner of clever monitoring and control functions. This sounds like what Encorp says, but they say Encorp can only do these things if you have Encorp switchgear. 6th is far more equipment-agnostic.
http://www.sixthdimension.com

Alternative Designs Inc — ADI has unique stirling engine technology enabling operation at much higher temperatures, attaining efficiencies of 50% and greater. Other enhancements include an advanced regenerator, and simplified heater head design, leading to big cost reductions and higher reliability. [I am an advisor to this company.]

DayStar Technologies — Unique PV cell technology. Company first developed a “flat-plate concentrator” technology that was clever and intriguing, but would require extensive capital development. DayStar is now focused primarily on their own cadmium-telluride “thin-film-on-metals” solar cells. The cells are manufactured in sheets, which can be used whole, or cut into cells which can be a direct “replacement” for Si cells, at half the cost.
http://www.daystartech.com

Rolls Royce — as noted above, RR decided not to pursue a microturbine development, despite having invested quite a bit of money in it. Instead, they’re going for a special purpose turbine to be combined with their own planar SOFC. Program began in 1992. This 1 MW hybrid is to be ready by 2005. RR will fund most of the program internally, but will seek strategic partners for funding, and technical/marketing support, leading to a possible spinoff company.

Vanteck(VRB) Technology Corp. — (public company, CNDX symbol VRB ) commercializing the vanadium redox battery technology, and in particular VESS, for Vanadium Energy Storage Systems. The company is in the midst of straightening out a particularly messy history of corporate ownership of IP and market rights, but assuming that can be done, are focusing on the US market. This is flow-battery has some uniquely attractive features, including high round trip efficiency, and freedom to size a system’s power (KW) and capacity (KWH) separately (either aspect can be added to over time). In concept, this is very similar to the Regenesys battery, but with different chemistry, and targeted at smaller systems. The first commercial installation outside Japan is starting up now — a 250 KW/ 520KWH unit at ESKOM, in South Africa.
http://www.vanteckvrb.com/

Regensys Large Scale Utility Energy Storage

National Power (U.K.), has announced a new electricity storage technology – called Regenesys – in which a flowing electrolyte is charged and then and stored in tanks for later use. It has a high speed of response, supplies real and reactive power and is therefore suited to many different applications on a power system.

The Regenesysª system is based on regenerative fuel cell technology, (sometimes known as redox flow cell technology). Two electrolytes flow through the fuel cell on either side of an ion exchange membrane. By applying a voltage across the electrolytes they change state and become “charged”. The “charged” electrolytes pass out of the fuel cell to be stored in tanks. Just like a rechargeable battery, the process can be easily reversed. The “charged” electrolytes flow back through the fuel cell and electricity is produced.

The two electrolytes are concentrated solutions of sodium bromide and sodium polysulphide. The technology is environmentally benign, modular, comparatively easy to site, and separates the power rating from the energy storage capacity. These features make it suitable for energy storage applications in the 5 – 500 MW range which require storage times from fractions of a second to 12 hours or more.

Following successful trials of a Regenesys pilot plant at a power station in South Wales, the company will build its first full scale commercial plant at Didcot in Oxfordshire. Detailed designs are now complete for up to a 15 MW and 120 MWh utility scale energy storage plant. The plant would be housed in a low-rise building, occupying a compact site conservatively estimated at less than 0.5 hectare (1.2 acres). This generic design could be used for a number of applications within the power industry.

The total installed capital cost will be approximately $150/kWh. With continued technical improvements, National Power has set an eventual target price of US$80/kWh.

A storage plant with these cost and performance characteristics will provide significant technical and financial benefits in the operation of a network, from more efficient use of plant (generation, transmission and distribution), and from improved system performance. Storage can also significantly enhance the value of electricity produced by renewable generators, such as wind turbines.

The only available existing large-scale energy storage techniques are pumped hydro or compressed air energy storage, which have severe geographical limitations. Regensys would provide a real alternative. Other energy storage techniques such as batteries, flywheels, superconducting magnetic storage and supercapacitors have different capacity characteristics, and are not well suited to large scale applications.

National Power has formed a new business unit within its Commercial Division to develop the Regenesys technology in the UK and overseas.

Contact: Barry Davidson barry.davidson@natpower.com tel 011-44-1235-444-991

http://www.national-power.com/regenesys/brochure_FSET.htm

(I also have a PDF file of their brochure)

==== Some Additional Technical Details ===============

Regenerative fuel cells are a separate class of electrochemical device, which have inert electrodes acting only as an electron transfer surface. The electrodes do not take part in the electrochemical process and so do not limit the energy storage capacity of the regenerative fuel cell. This approach allows the complete separation of power, determined by the module’s electrode area, and energy, determined by the storage tank volume.

There are many electrochemical couples that have been assessed for use in flow battery systems. The Regenesys system uses electrolytes of concentrated solutions of sodium bromide and sodium polysulphide. These salts are readily soluble and present no adverse hazards in handling or storage. They are abundant and available at the necessary degree of purity at moderate cost. The use of other bromide and sulphide salts was investigated during the development phase, but the increased electrochemical efficiency would not necessarily repay the additional costs of the alternatives.

The simplified overall chemical reaction for the cell is given by:

3 NaBr + Na2S4 2 Na2S2 + NaBr3

The conversion of electrical to stored chemical energy and back again can be repeated indefinitely with high turnaround efficiency. There is no memory effect associated with the specific electrochemistry of the Regenesys system, and a full charge/discharge cycle can be completed without limitation of a theoretical maximum depth of discharge.

When commissioned the plant will have the ability to start up in less than 10 minutes or, if held in stand-by mode with the modules filled with electrolytes, in seconds. The plant will have a high rate of dynamic response. When running, the plant will be operated fully connected to the grid, capable of turning from a state of fully charging to fully discharging or any state in between in the order of 0.02 seconds. This performance makes the plant suitable for a number of ancillary service applications such as voltage control and frequency response. In stand-by or shutdown mode there is no self-discharge of the electrolyte stored in the tanks.

The Power Conversion System (PCS) provides the interface between the AC network electrical supply and the variable operating voltage of the DC modules. The four quadrant converter system is designed to transfer both reactive and real power simultaneously and independently from each other.

The PCS allows the operator to select from a wide range of operating modes.
– Pre-defined schedule
– Load following
– Voltage control mode
– Frequency regulation
– Power System Stabilisation
– Constant VAr
– Constant AC power
– Self-commutated to operate as a UPS, or to provide Black Start

And, practical peak shaving and dispatch optimization on networks, which has been limited by the availability of suitable technology.

IEEE Standards Group Tackles DR Interconnection Issues

The IEEE Standards Coordinating Committee 21 (IEEE SCC21) oversees the development of standards in the area of fuel cells, photovoltaics, distributed generation, and energy storage.

— SCC21 coordinates efforts in these fields among the various IEEE societies and other appropriate organizations to insure that all standards are consistent and properly reflect the views of all applicable disciplines. SCC21 reviews all proposed IEEE standards in these fields before their submission to the IEEE Standards Board for approval and coordinates submission to other organizations. (To learn more about IEEE Standards activities, go to: http://standards.ieee.org/ )

“Standard for Distributed Resources Interconnected with Electric Power Systems” is the task of a new working group (one of 19 under SCC21). Their project authorization request (PAR) P1547 got the final go ahead in March ’99 to develop a “uniform standard for interconnection of distributed resources with electric power systems and requirements relevant to the performance, operation, testing, safety considerations, and maintenance of the interconnection.”

Working Group Chair — Richard DeBlasio (NREL)
Vice Chair — Frank Goodman (EPRI)
Vice Chair — Joseph Koepfinger (Duquesne), and
Working Group Secretary — Thomas S. Basso (NREL).

~~~~~~~~~~~~~~~~~~~
For a good and timely overview, see this recent testimony before the US Senate:

“Testimony on Interconnection of Distributed Resources before the Senate Energy and Natural Resources Committee, US Senate” June 22, 1999,
by Tom Schneider,Vice Chair, Energy Policy Committee, IEEE/USA,
http://www.ieeeusa.org/FORUM/POLICY/99june22.html
~~~~~~~~~~~~~~~~~~~

The P1547 Working Group, whose membership is approaching 200, has met already several times since the initial organizational meeting in December, and will continue to meet as often as every 2-3 months. The last meeting was held Jun 28-30, in Chicago. Future meetings are set for Sept 27 (tentative – precise date to be determined), in Washington DC, then Dec 1-2, in Tampa.

At the September meeting, there are tentative plans to hold an open informational session, which might be good to attend. Also, the Summer Power Meeting in Edmonton (July 18-22) will have DR as a major theme (“Track 3”), with a panel session on interconnection.
(http://www.ieee.org/organizations/society/power/subpages/meetings-folder/summer99/sm99prev.htm)

There’s an aggressive schedule to put together a DR standards document for submission to the IEEE Standards Board — to have a final draft ready by March 2000. Individuals and small groups are working on writing assignments to prepare the various sections. The group has already produced and assembled a great deal of valuable information, and have worked out detailed classification schemes for types of DR interconnection equipment and configurations. Probably the most important attribute is size of the DR, and the size of the system it’s connected to–the larger the DR, as a fraction of the system, the more involved the requirements.

Overall, this is a huge undertaking. According to one estimate, there are at least 18,000 “combinations,” considering the number of different kinds of distribution circuits, inverter types, size ranges, and “issues” to address. An analysis by EEI (Interconnection Operations and Planning Group) has identified 30 issues, times 3 converter types (inverter, and synchronous, and asynch generator), times 5 distribution circuit types. (Some of the 30 issues include nuisance fuse blowing, reclosing, islanding, overvoltages, harmonics, switchgear ratings, lineworker safety, etc.) A major goal of this project is to minimize the time and expense required for protection studies and eliminate customization of solutions, by providing a common analysis framework and prequalification of equipment.

Individual states are under ratepayer pressure to come up quickly with their own jurisdictional DG interconnection rulings, and there are major programs in Europe, so it’s all the more important to avoid the complications of multiple (possibly conflicting) sets of requirements. Fortunately, many other IEEE committees already have standards related to interconnection topics or components, e.g. for power quality, relaying, etc. The ongoing cooperative consensus approach to the P1547 DR standard should help accelerate the development of a technically sound, uniform interconnection standard.

It’s seems surprising that relatively few utilities are represented on the Working Group, despite the often stated belief that DR is going to be hugely significant. (Industry organizations are actively participating, however, along with equipment makers and others.) The companies that are involved seem to embrace the DR concept and appear to be positioning themselves to prosper by it. (Some other companies are getting reputations as obstructionists, throwing obstacles and delays at every proposed installation.)

Participation is the best (only) way to tap into this rich array of information on the subject (all in hardcopy with minutes of the meetings!), and to track and influence developments. Industry experts who contribute their time and energy get a chance to make a difference.

Contact: Dick DeBlasio, 303-384-6452, dick_deblasio@nrel.gov
Tom Basso, 303-384-6765, thomas_basso@nrel.gov

Substation Power Quality System

Sandia is developing a proposal for a Substation Power Quality System (SPQS) project and needs industry input. Attached below are the text of a powerpoint presentation and a list of questions. There hasn’t been much involvement yet from utilities, so UFTO companies are especially encouraged to respond directly to Sandia with comments. The central question now appears to be: “Are utilities or large end users interested in a substation level power quality system?”. (There will also be a presentation at the PowerSystems World ’98 conference in Santa Clara, CA on Nov. 11.)

The DOE Energy Storage Systems Program at Sandia has been working with industry and other laboratories for several years on storage systems for substation power quality applications.

Over the last three years, DOE and Sandia worked closely with Public Service of New Mexico on a project with the intent of developing and demonstrating a substation power quality system. Industry partnerships were to be formed for the development phase, and a demonstration site was chosen at Sandia. Recent market downturns coupled with turmoil in the electric utility industry prevented the completion of this project. The DOE Energy Storage Program is still committed to working with industry on the development and testing of substation level, mid-voltage power quality systems.

The system as currently conceived would operate at the 12-15 kV, 2-6 MVA level. It would correct power quality problems originating upstream of the substation in the transmission line system or downstream in adjacent distribution system feeder lines. Open questions exist regarding the required ride-through time, technology to be employed, and the location for such a demonstration. This is anticipated to be a three-year project. The intent is to form a cost shared partnership to design, construct and field a system in this power range.

Sandia is very interested in obtaining comments on the Utility and Electricity provider industry interest in such a project, and feedback from energy storage system suppliers on the technology available for this type of system.

————-(text of powerpoint vugraphs)——–
Substation Power Quality Project

Dean Rovang, Abbas Akhil, John Boyes
Sandia National Laboratories, Albuquerque, NM

(Oct. 7, 1998, ESA Fall ’98 Meeting, Atlanta, GA)

— Why Are We Here?
Discuss the ESS/SNL perspective on a Sub-station Power Quality System (SPQS)
Project
Past motivation and future expectations
History of project at SNL with PNM
SNL’s performance expectations for PQ system
Obtain industry perspective
Industry perspective on SPQS market
Industry needs of system performance:
Power level, ride through, footprint
Describe SNL’s expectations for further work
Competitive, cost-shared proposals
RFI followed by RFP

— Past Motivation
PNM’s experience with large hi-tech customers in their service area
Traditional UPS solutions did not solve all PQ problems
PNM was seeking a utility-level solution
SNL advocated a SMES solution at a mid-voltage level
SNL Superconductivity Program
Preliminary thinking indicated 1 – 2 second ride through was adequate

— Project History
PNM and SNL formed an Industrial Advisory Board (IAB)
Primarily semiconductor manufacturers
Define system performance requirements
1 – 2 second ride through was thought to be adequate
“Baseline” PQ system concept with 2 second ride through
12.47 kV, 22.4 MVA
SMES system size was 42 MJ

— Other IAB input
Cost must not only be competitive, but aggressively competitive
Not UPS, limited ride through
It protects entire load, people expect lower $/kVA
Demonstrate device at someone else’s facility
Some factors motivated rethinking project scope
Cost estimates of $17 million for baseline system
4 second sag recorded at customer site

— Revised Baseline system was proposed
SNL advocated idea of “meaningful yet supportable” demonstration
6 MVA size: matches SNL loads
Split-bus concept at Substation 41
Use battery to reduce cost and meet ride through requirements
SNL and PNM pursued CRADA for demonstration at SNL site
CRADA package was prepared but not executed
Project canceled

— SPQS STILL MAKES SENSE
Mid-voltage level is the next logical step in the evolution
of PQ systems
Industry wants to develop SPQS technology
Provides vehicle for Utilities to deliver Premium Power
Whole facilities and multiple customers can be protected
in a Premium Power Park concept
Utility will have control of PQ system at the substation level
Short power interruptions can be corrected at one place
Voltage sags are not always corrected by existing systems
Economy of scale

— Substation Power Quality System:
Correct voltage sags/swells and momentary outages from transmission lines or
adjacent feeder lines

— SNL Expectations for Future SPQS
Interconnection voltage: 12 – 15 kV
System power: 2 – 6 MVA
Ride through options:
2 – 8 seconds for voltage sags
up to 30 seconds for 3rd re-closer requirements
1/4 cycle switch time
Storage technology insensitive
Turnkey system
Modular design, outdoor installation
Self-contained energy storage module(s) – eliminate need for building
Minimize footprint

Demonstration preferred at customer site; alternately at SNL
Innovative power conversion and system design
Prefer not paralleling existing small systems to meet performance
Encourage formation of user/supplier consortia
Cost-sharing of 50-80% by industry
SNL contribution expected to be $1.5-2.0 M over 3 years
Time to demonstration – 3 years
Place contract in FY99
System build FY00
System installation and testing FY01

————————————–
QUESTIONS
————————————–
Questions For The Utility/Electricity Provider Industry

1. Are Power Quality solutions at the substation location
useful to you?
2. What voltage(s), in mid-voltage range, are of interest?
3. What is the minimum power level of interest?
4. What power quality events should this system address?
5. What ride through time should this system be capable of
servicing?
6. What problems would this system create that must be addressed
in the design phase? Reconnection? Siting? Safety? Control?
Maintenance? Etc.?
7. What type of sites would benefit from this system?
8. Are there any potential sites in your system?
9. Are you interested in hosting the site?
10. Do you see the need for this system now? In the near
term (1-3 years)? In the long term (>3 years)?
11. What would be a cost goal for such a system?

Questions for the Power Quality System Industry

1. Are the technical specifications in the ballpark?
2. Is the schedule estimate in the ballpark?
3. What are the technical issues in the proposed system?
4. Are the power electronics for the mid-voltage specification
ready for commercialization? If not what is the state of
the art?
5. What are the cost drivers of a mid-voltage Power
Quality system?
6. Who should perform the system integration function?

Questions for All

1. What kind of partnerships/consortia/collaborations could
be formed to pursue this system? Cost Sharing? Intellectual
property rights? Project responsibility? Etc.?
2. What other information is necessary for your company to
participate in this project?
3. What other information is necessary to start this project?
4. Other questions or comments:

___ Indicate if you would like emailed summaries of ESA meeting discussion
and future communications on the SPQS project.
Name:
Company:
Telephone:
Fax:
Email:

Please Return to: John D. Boyes, Sandia National Laboratories
Telephone: (505) 845-7090 Fax: (505) 844-7874
Email: jdboyes@sandia.gov

Renewable Energy Technology Characterizations

In 1996, the U.S. Department of Energy’s Office of Utility Technologies (OUT) and the Electric Power Research Institute began preparing a document characterizing the current status and projected performance and cost improvements of several emerging renewable energy technologies. This detailed document was recently completed and can now be downloaded as a collection of files on the OUT Web site organized under the following major headings: Biomass, Geothermal, Photovoltaic (PV) Technologies, Solar Thermal Technologies, Wind Technologies, Project Financial Evaluation, and Energy Storage Technologies. (DOE April 3, 1998)

——————————————-
http://www.eren.doe.gov/utilities/techchar.html
——————————————-

U.S. Department of Energy Office of Utility Technologies

Renewable Energy Technology Characterizations

A joint project of the Office of Utility Technologies, Energy Efficiency and Renewable Energy, U.S. Department of Energy and the Electric Power Research Institute

The Renewable Energy Technology Characterizations describe the technical and economic status of the major emerging renewable energy options for electricity supply. These technology characterizations represent the best estimates of the U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) regarding the future performance and cost improvements expected for these technologies as a result of continuing research and development (R&D) and development of markets for renewable energy through the year 2030.

Background
These technology characterizations, which have existed as working drafts primarily for internal use at DOE, were originated in 1989 to support analyses in the development of the first National Energy Strategy. Because of growing interest in renewable energy technologies, an increasing number of researchers and energy policy analysts have expressed interest in having access to these technology characterizations. In response to requests to make these data more widely available, the current updates can now be downloaded from this Web site and are also available in paper form (EPRI Topical Report No. TR-109496, December 1997).

Copying and Distribution
The Renewable Energy Technology Characterizations are copyrighted, but permission is granted for unlimited copying for noncommercial use.

Ordering Information for Paper Version
The paper version of the report is available from EPRI, at $50.00/copy for domestic U.S. customers. Requests for paper copies of this report, as well as pricing for non-U.S. customers, should be directed to: EPRI Distribution Center, 207 Coggins Drive, P.O. Box 23205, Pleasant Hill, CA 94523; (510) 934-4212.

Technology Characterizations

The technology characterizations can be downloaded by selecting the PDF files below. (You must have Adobe Acrobat Reader 3.0 to view these files error free.) Learn about PDFs.

Front Matter (PDF 98KB)
Title page
Disclaimer and Copyright Notice
Report Summary and Abstract
Acknowledgments
Contents, Figures, and Tables

Introduction and Overview (PDF 279KB)

Biomass
Overview of Biomass Technologies (PDF 38KB)
Gasification-Based Biomass (PDF 337KB)
Direct-Fired Biomass (PDF 84KB)
Biomass Co-Firing (PDF 229KB)

Geothermal
Overview of Geothermal Technologies (PDF 64KB)
Geothermal Hydrothermal (PDF 178KB)
Geothermal Hot Dry Rock (PDF 179KB)

Photovoltaic (PV) Technologies
Overview of PV Technologies (PDF 368KB)
Residential PV (PDF 808KB)
Utility-Scale Flat-Plate Thin Film PV (PDF 349KB)
Utility-Scale PV Concentrators (PDF 119KB)

Solar Thermal Technologies
Overview of Solar Thermal Technologies (PDF 304KB)
Solar Power Tower (PDF 311KB)
Solar Parabolic Trough (PDF 380KB)
Solar Dish Engine (PDF 910KB)

Wind Technologies
Overview of Wind Technologies (PDF 227KB)
Advanced Horizontal-Axis Wind Turbines in Wind Farms (PDF 353KB)

Project Financial Evaluation (PDF 343KB)
Introduction to Figures of Merit
Financial Structures
Techniques for Calculating Levelized COE
Financial Model and Results
Payback Period

Appendix: Energy Storage Technologies
Overview of Energy Storage Technologies (PDF 36KB)
Battery Storage for Renewable Energy Systems (PDF 112KB)

EL-24496

Energy Storage Assoc. Spring Meeting

(See UFTO Note 1/13/98 for most recent news from the ESA)

Here’s the preliminary agenda for the ESA’s upcoming spring meeting, April 7,8 in Phoenix. I am tentatively planning to attend at least a part of the meeting. Hope to see you there. (See UFTO Note 1/13/98 for most recent news from the ESA.)

Energy Storage Association Spring Meeting 1998
Preliminary Agenda of Invited Speakers (updated March 6, 1998)

Monday, April 6
12 noon – 6:00 pm ESA Board of Directors Meeting

Tuesday, April 7
8:30 am – 8:45 am Welcome and Introduction
– Phil Symons, Chairman, Energy Storage Association

8:45 am – 10:30 am Feature Forum: Energy Storage: Enhancing Customer Service
in Competitive Electricity Markets

– Peter Johnston, Arizona Public Service Company
– Scott Peele, Carolina Power and Light
– Cecilia Mak, Lucent Technologies

10:30 am – 10:45 am Break

10:45 am – 12 noon Fuel Cell-Energy Storage Systems Session
Molten Carbonate Fuel Cell-Island (non-grid connected) Power Plant

– Paul H. Eichenberger, Energy Research Corporation

– John Cerveny, Plug Power

– Scott Weiner, Ballard Generation Systems

12:00 pm – 1:00 pm Lunch

1:15 pm – 2:45 pm Utility Power Systems Session

– Stan Sostrom, Power Engineers, Inc.

PQ2000 Field Experience
– Brad Roberts, Omnion Power Engineering Company

Storage Research Program for the Dutch Distribution Companies
– Gerard Thijssen, N.V. KEMA,The Netherlands

3:15 pm – 3:30 pm Break

3:30 pm – 5:00 pm Program Updates

International Energy Agency – Results of Annex IV
– John Baker – EA Technology, United Kingdom
ESA Board of Directors Report
– Phil Symons – Chairman, Energy Storage Association
Energy Storage Association Business and Products
– Jon Hurwitch – Executive Director, Energy Storage Association
Department of Energy, Energy Storage Program
– Dr. Christine Platt – Program Manager, U.S. Department of Energy

ESA Dinner at Pinnacle Peak Patio (Scottsdale) meet at 6:00 pm

Wednesday, April 8

8:30 am – 9:45 am Power Quality Session
– Mark McGranaghan, Electrotek
– Todd Eudy, PowerDigm Systems
– Michael Gravely, Superconductivity, Inc.

9:45 am – 10:00 am Break

10:00 am – 12 noon Renewable Power Systems Session
– J. Michael Davis, Golden Genesis
– Tim Ball, Applied Power Corporation
– Roch Ducey, U.S. Army Construction Engineering Research Labs
– Robert Diello, ??

12 noon – 1:15 pm Lunch

1:30 pm – 4:30 pm Tours (optional)

Arizona Public Service Company – STAR project
Salt River Project – Transportable battery project

——————————————

Hotel Accommodations:
Holiday Inn Select Airport
4300 E. Washington
Phoenix, AZ 85034
(602) 273-7778
When making reservations mention the ESA to receive the special conference rate of $99/night (single or double). The room block expires on March 15, 1998 so please make your reservations early!! The hotel provides complimentary airport transportation on a 24-hour basis.

Meeting Registration:
Please complete the attached form and return with appropriate fees by March 20, 1998. If you plan to attend the dinner on Tuesday night please check off that box on your registration form.

Miscellaneous:
Continental breakfast and lunches are included as part of the registration fee. Attire for the meeting is business casual.

For Program Updates:
Please watch our website at www.energystorage.org for additional information and program updates.

For information on tourist activities in the Phoenix/Scottsdale area:

Scottsdale Chamber of Commerce
1-800-877-1117
http://www.arizonaguide.com/scottsdale www.arizonaguide.com/scottsdale

Phoenix & Valley of the Sun Conventions and Visitors Bureau
1-602-254-6500
http://www.arizonaguide.com/phxcvb www.arizonaguide.com/phxcvb

Energy Storage Association
4733 Bethesda Avenue, Suite 608
Bethesda, Maryland 20814
301-951-3223 fax 301-951-3235 jwitch@switch.smart.net

Ergenics Hy-Stor Battery Energy Storage

I’ve been staying in close contact with this company for a long time, and reported about them to UFTO the first time in Dec 95 and again in Oct 96, describing their Hy-Stor battery technology. They haven’t received a lot of attention in the storage/battery industry over the years, but my personal view is that they could be a major dark horse in the business.

In addition to the utility scale device, they’ve also built a “D” cell. Inherently, the technology features very high cycle life, high power and energy density, and suffers no ill effects from over charging or discharging.

They’re continuing to make major progress, and are looking for investment capital and partners.

Contact:

Dave DaCosta, President
or Phil Burghart, Sr. VP

Ergenics, Inc.
247 Margaret King Ave.
Ringwood NJ 07456
973-962-4480 http://www.ergenics.com

——————————————————–
(Disclosure: I do some consulting for the company,
and have a finders fee agreement with them.)

——————————————————–
The company issued this press release this morning:
——————————————————–
Thursday January 15, 9:30 am ET
Company Press Release SOURCE: Ergenics, Inc.

New Energy Storage Technology Leads Way to Low Cost Electric Power Supply

RINGWOOD, N.J., Jan. 15 — Ergenics announced today that it has initiated the second phase of its electric utility battery energy storage program. The program is directed at producing a long life (10 years), 25 kilowatt, 100 kWh battery module capable of daily deep discharge cycles for a variety of electric utility applications.

The initial product will be a simple peak shaving system which will be charged with low cost, “base load,” power at night and discharged during the afternoon peak load in order to reduce incremental generating capacity and its associated higher costs. This system is being developed for utility testing overseas where the differential cost between base load and peak load power is 3-5 times higher than in the U.S. The potential overseas market for the company’s battery energy storage system exceeds $30 billion. Ergenics is currently funded to build the first full scale submodule for testing based on a design previously approved by its foreign partner. The battery’s modular design allows construction of battery energy storage systems ranging in size from 100 kWh to 4,000 kWh.

Beyond the offshore project, Ergenics is exploring electric energy supply applications in the United States where electric utility deregulation is expected to create enormous opportunities for energy storage systems distributed across the power grid. Ergenics ultimately envisions household units which will provide reliable energy during power outages. These units will also store power purchased at low off-peak rates for later use in periods when energy would be more expensive.

Ergenics’ Hy-Stor(R) battery system is well suited for utility batteries. It couples the established know-how of the high energy storage density of metal hydrides with the extraordinary cycle life capabilities of nickel-hydrogen electrochemical cells which have been used in orbiting satellites for over twenty years. Half fuel cell and half battery, the only chemical reaction in the nickel-hydrogen battery is the simple oxidation and reduction of the nickel hydroxide electrode. This makes possible attainment of 10 years of life and tens of thousands of deep and shallow discharge cycles. In addition, and unlike any other battery, nickel-hydrogen batteries are tolerant of overcharge and overdischarge operation. This is especially important for higher voltage batteries where a large number of cells are connected in series. Complicated and costly electronics to balance the state-of-charge of the cells are not required.

Ergenics is a world leader in the development and commercialization of metal hydride technology. In addition to utility battery energy storage systems, Ergenics is developing hybrid electric vehicle batteries under a Defense Advanced Research Projects Agency contract, high energy, long life battery packs for electric bicycles, and hydrogen storage units for fuel cells. Privately owned, Ergenics, Inc. has its headquarters and principal manufacturing operation in northern New Jersey.

Energy Storage Assoc. Meeting

Energy Storage Association (ESA) Fall Meeting
“The Value of Energy Storage in a Restructured Utility Market”
Sacramento, CA
November 18 -19, 1997

((An UFTO Note on Nov 10 gave the original agenda for this meeting.))

*** –> SPECIAL OFFER <– ***

This one time, the ESA is offering to send a free copy of the full proceedings to prospective members, together with their membership solicitation package. Membership in ESA is a good way to stay in touch with developments in utility storage, and a year’s company membership is only $1500.

To request the package and proceedings of the November meeting, contact (please tell them UFTO sent you):

ENERGY STORAGE ASSOCIATION
TEL: (301) 951-3223
FAX: (301) 951-3235

E-MAIL: John Hurwitch, Executive Director, jwitch@switch.smart.net
——————————-

–> MEETING HIGHLIGHTS

(more details on request–and in the Proceedings)

–> Overview of the Market:
The goal of ESA and the DOE Utility Storage program is to build market volume for storage systems. Utilities are proving to be a very tough market for battery storage, despite a strong benefit/cost story. One hypothesis is that the benefits are scattered among different stakeholders (even within a utility), with no single part being big enough by itself. Nobody is in a position to put it together, and restructuring is making the situation even worse, as the walls go up inside utilities. Also, utilities say they have no money, and want the first cost to be very low, regardless of life-cycle considerations. Meanwhile, big needs are looming, especially on transmission systems, but nobody seems to own the problem or is in a position to make the investment.

Vendors are offering turnkey systems for various applications and markets, but there are very few orders, and those are mostly for very special situations, e.g. in Alaska (remarkable success stories). Vendors are getting very discouraged, and may be close to throwing in the towel.

Is the problem with the Technology? Marketing? Or do utilities “just not get it?” Or, are the proponents wrong in their view that storage is an idea whose time is overdue, and that it’s largely a matter of “education”? In 1996, DOE and Sandia visited with over two dozen utilities to try to understand the industry’s views on storage. Results were recently published: “Report on the Energy Storage Systems Program Executive Meetings Project” SAND 97-2700, November 97. However, more dialogue with the utility industry is still needed, to get to the bottom of these questions.

The ESA has proposed a flagship project called “Storage 2000,” as a joint program with DOE to stimulate and accelerate development, with a goal of 200 MW of project commitments by the year 2000. Applications are to include renewable, distributed, generation/transmission (ancillary services), and customer systems.

–> Energy Storage in the UK
The closer storage is to the customer, the better. Anthony Price, of National Power, UK, compared batteries to warehouses for “just in time” distribution, where it’s well known that you put storage only in one place in the system, close to the customer. He showed an analysis of the bulk market hourly price over time. Even with big differences between on and off peak wholesale prices, you can’t win by buying off-peak and selling on-peak. Not only are there roundtrip (storage) losses, but you’re also fighting the spread (sell at the bid price, buy at ask). What you’d be selling is capacity, and there’s currently an excess.

The farther down the distribution chain you are, more distribution costs are built into the price of goods, so storage has more value. However, whoever owns the storage controls that value. “If the customer owns the storage, then the rates are wrong”.

–> Uninterruptible Power and Power Quality
While utility storage isn’t moving, UPS and P/Q applications are a very strong market (a lesson there somewhere?). There are still issues, however. Though vendors have products, there’s often insufficient understanding of what a “disturbance” really is. For example, they may design for a 3 phase symmetrical fault, which rarely occurs. Phase shifts and waveforms need particular attention. Too often, products need to be redesigned in the field.

There are several interesting systems using steel flywheels: – International Computer Power — steel flywheel in a 100 kVA motor genset to provide ridethrough, successfully demonstrated for two years at a Hewlett Packard site, dramatically reducing diesel backup starts. – Holic Power Protection — 100’s installed worldwide. Diesel generator and flywheel combination where the flywheel dynamically adjusts itself to maintain constant generator speed. 1250 kVA unit runs about $1.1 million. Without the diesel, it can provide short term ride through. – Active Power, Austin TX, has been issuing press releases lately. Modular pancake unit provides 400kW for 5 sec, for short discharge P/Q applications.

In “new” technology (composite) flywheels, Beacon Power presented their plug-replacement for batteries in UPS systems. The 1 kW, 2kWh unit goes directly on the DC bus. Beacon is a joint venture between SatCon and Duquesne. They expect to be in production by the end of ’98, with beta tests in mid year.
–> Renewables and Storage
Solar and Wind energy systems need storage, particularly in remote/village power applications. The opportunities are huge, particularly to supply the 2 billion people in the world with no electricity, and to displace diesel fuel consumption. A number of programs are trying to come up with reliable modular integrated systems (hybrids with diesel, solar or wind, and batteries). Batteries are often blamed as the weak link in renewable energy systems (right along with inverters), but the blame may be misplaced–often the wrong type of battery is installed by local people.

The President’s “Million Solar Roof” initiative is beginning to be felt, though this may not necessarily imply much use of storage. SMUD has a huge commitment to renewables, and are just now beginning to consider the potential benefits of storage in that context.

The first major project under Storage 2000 is to be the “Renewable Generation and Storage ” (RGS) project. Partners will be selected by formal solicitation process in 1998 for design, development and testing of a prototype integrated system with a PV array, inverter and storage, ready for customer use. International opportunities exist for “Remote Area Power Systems” or mini-grid systems. Funding is available, and local governments are motivated, e.g. in Latin America. The Solar Energy Industry Association has information. ( http://www.seia.org ).

–> Texas Energy Storage Technology Institute (ESTI)
This is a coordinated research program involving all the universities in Texas, funded in part by the Texas Energy Coordinating Council, a state agency. ESTI is doing work in capacitors, batteries, and particularly high performance flywheel systems for railroad applications. DOT and DARPA funding support the Advanced Locomotive Propulsion System, which includes a 3 MW Allied Signal gas turbo-alternator, and the University-developed 167 kwh flywheel for braking and acceleration. The idea is to provide an alternative to electrification of railroad right of way. ESTI wants to encourage synergies between stationary and mobile storage systems. Contact John Price, 512-471-4496, 512-232-1888 (direct), j.price@mail.utexas.edu, http:/www.utexas.edu/research/cem

–> Key Note Speaker

Separately, Pramod Kulkarni of the CEC outlined the priorities for storage in California, seen as a “strategic” area under the public benefit R&D program.