Posts

Travel Reports

In September, I attended these three conferences. They were all different, but also had a great deal in common. This writeup attempts to capture major themes and to provide highlights of some of the more interesting developments that came to light. Please don’t hesitate to let me know if you’d like further details on anything discussed below (or anything you see on the agendas that I didn’t mention).

~~~~~~~~~~~~~
EESAT Electric Energy Storage Applications and Technologies Conf.
Sept 18-20, 2000, Orlando, FL

Distributed Power Strategies and Business Opportunities
Sept 25-27,2000, Washington, DC

Clean Energy Roundtable
Sept 27-29, 2000, Aspen, CO

~~~~~~~~~~~~~

One major common theme–

“Attack of the Killer Investment B’s”

Many investment banking firms are cranking up bigtime to get a piece of the action in high9s-clean-distributed energy technology. They’re starting to “get it” and don’t want to miss out, though there’s a lot they don’t know about it (and their in-house utility analysts aren’t much help). They’re attending these events in ever increasing force, and also putting on their own!

BofA Securities, CIBC World Markets, Robertson Stephens, First Albany, Deutsche Banc Alex Brown, Morgan Stanley, Goldman Sachs, Lehman … They’re issuing research reports, initiating coverage, and investing in and pushing services to companies in this industry. Not only are they coming to energy conferences, they’re putting on their own, usually invitation-only for clients and other investors.

– Goldman Sachs will be handling Powercell’s (zinc-bromine flow battery) next financing, following a recent $30 Million infusion from a variety of investors.

– Credit Suisse First Boston is acquiring DLJ, which is doing a private placement for ZBB (the other zinc-bromine flow battery).

– Bear Stearns, famous for their very popular 250 page research report, “Distributed Energy Services” back in April, is coming out with one on microturbines in the next couple of weeks, with more to follow.

– Beacon Group, recently acquired by Chase H&Q, has been actively doing energy technology investments alongside their extensive array of more traditional energy sector plays.

– Price Waterhouse Cooper is helping STM (stirling motor) to raise $4M each coming from a coalition of DTE, Delco Remy, Ricardo (engine consultants) and a group from Singapore, to be followed in the near future with a probable private offering.

The main drivers behind all this excitement include deregulation/competition, demand for premium power, environmental concerns (new regs, Kyoto, etc.), and technology advances (renewables, distributed resources, and the internet). Add to that the general supply crunch here and abroad. While there are some aspects of the investment “flavor of the month”, these trends are seen as real, irreversible, and significant.

Traditionally, development stage companies are financed by venture capital or corporate money. Now, however, companies are going public earlier and earlier (“pre-earnings” and even “pre-revenue”). This means that retail investors are engaging in “public venture capital” as it has been called, taking on the higher risk of early stage companies.

Speaking plainly, there’s a bubble in the pre-ipo and public company stocks that is similar to what’s been happening in the dot-com world and elsewhere. The players are piling on, and both good and bad can come of it. While this industry enjoys all the attention and increased capital (and valuations), there will be a continual shaking out, with big winners and losers–as we’ve seen very recently. One just hopes the losers won’t put a drag on the whole sector.

~~~~~~~~~~~~~~~~~~~~~~~~~~

Clean Energy Roundtable http://www.montreuxenergy.com

This is one in a series of invitation-only conferences, many in Europe, targeting senior executives. The “Aspen Clean Energy Roundtable” meeting was the 7th annual such event, with many repeat attendees. A number of major energy companies, bankers, and NGO’s were represented, plus a sizable contingent from the DOE National Labs, but just a few utility people. Speakers are strongly discouraged from doing sales pitches, but rather to shed light on big trends and issues.

The biggest trend and issue — a widely held view that is an absolute necessity to come up with a “low/no carbon” energy future, in light of global climate risks and population growth and economic development. Furthermore, hydrogen is the key, as the main energy carrier of the future. There were a few visionaries who began talking about the potential of a “hydrogen economy” in the mid 70’s (during the first oil crisis). Maybe their day is coming.

Another prominent theme was the evolving role of government, from “Nanny” to enabler. Bruce Stram of Enron Energy Services spoke about this historic role of government, intervening heavily to cope with market imperfections, as less necessary as telecommunications and information flow improve. Instead, government should avoid “command and control” and instead punish social externalities with penalties, and support a vigorous R&D program.

Swiss Re reviewed their outlook that global climate issues represent huge risks to the insurance industry, noting losses from hurricanes and other weather-related damages. They’ve been very active promoting Kyoto, emissions trading, and clean development mechanisms.
http://www.swissre.com/e/issues/environmental.html

Shell Hydrogen is a new independent business within the Shell group. CEO Don Huberts explained the parent company’s commitment to sustainable development (disposed of coal assets, and set up Shell Renewables and Shell Hydrogen). He described a 250 kW SOFC installation in Norway integrated with fish farming, use of an SOFC with injection of CO2 into depleted wells and deep aquifers, commercial and residential CHP with SOFC or PEM, and a proprietary natural gas processor to make hydrogen for residential fuel cells.
http://www.shell.com/hydrogen-en/

Valuing Renewables — Shimon Awerbuch of ICF Consulting reviewed his work on using a portfolio approach to valuing renewables. Traditional engineering-based approaches are completely inadequate–they ignore financial risk; they didn’t work in manufacturing (completely missed computers, robotics, and CAD); and they don’t work for high capital, low operating cost projects. Portfolio concepts are routinely applied in securities investment, where adding even a higher cost (lower return) investment to a portfolio can reduce the total risk, for an overall better result. See his articles Public Utilities Fortnightly, Feb 15, 2000, and Energy Policy (to be published) awerbuch@aol.com

Other presentations included:

CMS Energy is pursuing environmentally friendly technology solutions, including microturbines for gas field pumping operations, a methanol plant installed in Africa to eliminate a massive gas flare, and their own “virtual power plant” program they’re calling Elan (electric local area network).

Honeywell’s microturbine group sees their devices fitting into a seamless array of energy management systems, controlled over the internet in real time.

Stirling Energy Systems, in Phoenix, is gearing up to develop huge solar power farms using dish concentrators with the Swedish-made Kockums stirling engine.

H-Power is aggressively pursuing rural markets for their existing commercial small scale PEM fuel cell systems.

~~~~~~~~~~~~~~~~~~~~~~~~~~

Electric Energy Storage Applications and Technologies Conf.
EESAT http://www.cmcmtg.com/eesat

The message is similar to the June ESA meeting [See UFTO Note, 25 April, 2000]
–storage is coming into its own, as part of the boom in new energy technology, along with DG, renewables, premium power, etc. The complete proceedings will be published in hardcopy and on a CD, by early December.
~~
Keynoter Bill Parks, the lead for DOE’s new Distributed Power effort, [UFTO Note May 31] noted the convergence of many issues, including growth (economic, population and energy demand), price spikes, high oil imports, power quality needs, air and water quality, and climate change. New companies are entering, and everyone proclaims to be green. On top of that, average energy efficiency in the US hasn’t improved, capacity margins are below 10%, and power infrastructure is aging. DOE’s expanded efforts will go beyond the core technology R&D emphasis, to deal with systems, and to address institutional barriers. For example, the IRS is reviewing depreciation schedules for CHP and DG.
~~
Value of Storage – Tom Jenkin, Brattle Group, described an LP model they’ve developed to analyze in detail the arbitrage possibilities for a storage system. The model calculates the maximum net revenue over a one week period by optimizing the use of a generic storage device, hour by hour. At any given time, the device can do one of four things: charge (i.e. buy energy), sell energy, sell reserve capacity, or do nothing. Using price data for the California ISO, initial results suggest a capital cost of $250-$750/kW can be supported in this kind of application. tjenkin@brattle.com, 617-864-1576.
~~
At EA Technology (UK), they’ve developed a model to calculate net present value cost-benefit of various storage technologies in various applications. Alan Collinson, abc@eatl.co.uk
~~
Regenesys, the National Power spin off, has announced their first commercial scale project (120 MWH, 15 MW) at a power plant in the UK. This is one of the prominent “flow” battery technologies discussed several times before in UFTO Notes. Notably, they have qualified it to provide blackstart, in addition to energy management, arbitrage, and frequency and voltage regulation. They also have an initial agreement with TVA to the first N American installation.
http://www.innogytech.com
~~
Tokyo Electric is getting good results with their advanced sealed Sodium-Sulfur battery. A key to safety is an innovative self-shut down mechanism where an inner tube expands if heated (by the reactions that would result from a leak) and blocks the ceramic electrolyte. A 6 MW, 48 MWH system has been operating since mid 1999, for load leveling and ancillary services.
~~
AutoCap reported on the advantages of charging battery cells individually, greatly extending the expected life of batteries in large systems. When an entire string of cells are charged in series, due to variations some cells are overcharged and some undercharged. They’ve developed a system with an isolated charger, and a cell selector device that monitors and charges one cell at a time. This applies only to the maintenance charging, not the heavy recharging cycle after a discharge.
http://www.autocap.com/
~~
New Supercapacitor — there are countless stories around about ultracaps or supercaps. Many use low voltage aqueous electrolyte concepts, with extremely high surface area electrodes made of very porous materials, and utilizing the double layer effect. Though they can deliver unheard of capacitance in small packages (farads instead of microfarads), these cells have problems with high impedance and self-discharge. To reach any useful working voltage, cells must be put in series, and run into additional issues to do with voltage balance. According to tests of an 11,000 Farad unit at EPRI PEAC, a Russian company has a breakthrough concept involves an asymmetrical design, which solves these problems, and can deliver very high discharge rates over a wide temperature range, with high specific energy.
~~
From the website: http://www.esma-cap.com
“JSC ESMA electrochemical capacitors utilize a polar cell and aqueous electrolyte. The negative electrode is made of an activated carbon material having high surface area, where electric energy is accumulated at the electric double layer. The positive electrode is made of nickel hydroxide and designed for high charge/discharge rate. This combination of electrodes provides a 4-5 times increase in specific energy over capacitors designed with both electrodes made of a carbon material. The maximum operating voltage of the cells ranges from 1.3 to 1.6 V depending on the capacitor type and its operating mode. The capacitor is prismatic in shape, with a case made of plastic. It has a resealable safety valve in its cover to release gas during improper use when a certain value of excess pressure is reached. JSC ESMA capacitors have been designed to remain in service even if the operating voltage level is exceeded. Capacitor operating characteristics do not degrade if the capacitor is operated under an excessive voltage level over a short time. The capacitors can withstand a short circuit current caused by improper handling.”
~~
Emitter Turn-Off Thyristor (ETO) is a new solid state switch developed at Virginia Tech that promises great improvement over GTOs and IGBTs. It is a hybrid based on the GTO and MOSFET. It is much smaller and simpler, it uses less drive power, and it is 10 times faster — it can turn off 3000 amps in 2-3 microseconds, vs. 30 for present devices. This speed will enable switches that can react to faults in time to safely turn off rather than relying on fusing. Virginia Tech is actively looking for licensees to commercialize the ETO. (I have pdf copies of the full paper and the patent application.)
~~
Zinc Bromine Flow Batteries (ZBB & Powercell) Powercell’s standard unit is the PowerBlock, 100kW/100kWh, in one self contained package complete with power electronics, is in production. (http://www.powercell.com) ZBB Technologies Inc. in Wisconsin is developing a larger utility scale version, with DOE funding. Two 400 kWh demonstration units are being installed on Detroit Edison’s system this Fall. Though based on the same original work at Exxon years ago, the two programs have important design differences.
~~
Flywheels!
Active Power, following on their very successful IPO, has a deal with Caterpillar, who is selling systems under the name CAT 250. This is a 250 KVA, 12 sec system. A price of $250-325/KVA was mentioned. Active Power has also recently built active harmonic filtering into the package. Duke Power reported on a demo installation at one of their customer sites.

Magnet-Motor (Germany) reported on their use of 2KWH/150 KW flywheels on public buses, ever since 1988. Company website: http://www.magnet-motor.de/homeengl.htm

Several programs are working on flywheels using superconducting magnetic bearings: the Shikoku Research Institute, Chubu Electric with Mitsubishi, and Boeing Phantom Works. This last one appears to have some resemblance to the earlier work at Argonne that was supported in part by ComEd. It is funded under the DOE Superconductivity Initiative.

~~~~~~~~~~~~~~~~~~~~~~~~~~

Distributed Power Strategies and Business Opportunities
Sept 25-27,2000, Washington, DC

http://www.intertechusa.com/energy/distributedpower2000/introduction.html

One of dozens of conferences on distributed power, this one had some big names and a high level of international participation, but no big announcements or new insights. As usual, the networking opportunities were at least if not more valuable than the sessions.
~~
Ake Almgren, CEO of Capstone, was co-chair, with Mark Fallek of DTE Energy. In his opening remarks he noted that DG and central station plants are both needed, it’s not an either-or situation. DG can be thought of as another way to “distribute” power, not to “generate” it. Central station plants have a very long lead time, and difficult siting requirements. Also, T&D costs contribute as much as $4-500/KW to the price of power, which DG can avoid. Fallek cited some future global market estimates for DG of $38 billion/year. Premium power, now a $50 billion market, is growing at 30%/yr, suggesting $500 billion in 15 years.
~~
Bob Shaw, who single-handedly invented venture capital in new energy technology, and who helped start many of the notable companies now making headlines, gave a perspective that was extremely bullish on DG and renewables, but a bit alarmed about the “bubble” situation. He is convinced that DG really will take over from central station power, sooner rather than later. DG is a perfect case of a “disruptive technology”. The engines built by US automakers every year are equivalent to the capacity of the entire US generating system. So, an industry 1/10 the size of Detroit could replace that system in a mere 10 years. The fact that VCs and Wall Street see energy technology as the “next big thing” is making capital available to this sector as never before, but it is also leading to unsustainable valuations that could become problematic. The paper is available online: http://www.arete-microgen.com. I also have a copy of the powerpoint presentation, which provides some additional material.
~~
“First, Second, or Third Coming??”
Is DG just a replay of one or two previous episodes, or very different this time? Shaw clearly espoused the latter view, but others were less convinced. In the 60’s, a midwestern gas company pushed a “total energy” concept based on reciprocating engines; maintenance problems and the poor suitability of recips to baseload operation proved the undoing. In the 80’s, the PURPA QF provisions led to a swarm of packaged cogen installations; QF contracts have all but faded from the scene. Shaw maintains that today’s convergence of developments is really different. Robert Swanekamp, editor of Power Magazine, took an extreme contrarian position that DG is a non-event, and that 1/2 of the large CCGT’s on order will be cancelled as a power glut emerges. He said he had no knowledge of the disruptive technology argument, but that didn’t stop him from dismissing it. (He was probably the only person present who hadn’t heard about Clayton Christensen’s ideas and their relevance to DG. See UFTO Note 19 April 1999; or http://www.disruptivetechnologies.com/)
~~
Technologies — there were a dozen or more presentations by companies: makers of fuel cells, stirling engines, and microturbines; power electronics, internet-based controls and energy management; and O&M.
Barriers — reports on the EEI and IEEE interconnection efforts; an excellent overview of competitive, institutional, regulatory and financial obstacles by Nat Treadway, (for a similar presentation, see http://www.leeric.lsu.edu/deri/info/may2000/treadway.pdf)

Regensys Large Scale Utility Energy Storage

National Power (U.K.), has announced a new electricity storage technology – called Regenesys – in which a flowing electrolyte is charged and then and stored in tanks for later use. It has a high speed of response, supplies real and reactive power and is therefore suited to many different applications on a power system.

The Regenesysª system is based on regenerative fuel cell technology, (sometimes known as redox flow cell technology). Two electrolytes flow through the fuel cell on either side of an ion exchange membrane. By applying a voltage across the electrolytes they change state and become “charged”. The “charged” electrolytes pass out of the fuel cell to be stored in tanks. Just like a rechargeable battery, the process can be easily reversed. The “charged” electrolytes flow back through the fuel cell and electricity is produced.

The two electrolytes are concentrated solutions of sodium bromide and sodium polysulphide. The technology is environmentally benign, modular, comparatively easy to site, and separates the power rating from the energy storage capacity. These features make it suitable for energy storage applications in the 5 – 500 MW range which require storage times from fractions of a second to 12 hours or more.

Following successful trials of a Regenesys pilot plant at a power station in South Wales, the company will build its first full scale commercial plant at Didcot in Oxfordshire. Detailed designs are now complete for up to a 15 MW and 120 MWh utility scale energy storage plant. The plant would be housed in a low-rise building, occupying a compact site conservatively estimated at less than 0.5 hectare (1.2 acres). This generic design could be used for a number of applications within the power industry.

The total installed capital cost will be approximately $150/kWh. With continued technical improvements, National Power has set an eventual target price of US$80/kWh.

A storage plant with these cost and performance characteristics will provide significant technical and financial benefits in the operation of a network, from more efficient use of plant (generation, transmission and distribution), and from improved system performance. Storage can also significantly enhance the value of electricity produced by renewable generators, such as wind turbines.

The only available existing large-scale energy storage techniques are pumped hydro or compressed air energy storage, which have severe geographical limitations. Regensys would provide a real alternative. Other energy storage techniques such as batteries, flywheels, superconducting magnetic storage and supercapacitors have different capacity characteristics, and are not well suited to large scale applications.

National Power has formed a new business unit within its Commercial Division to develop the Regenesys technology in the UK and overseas.

Contact: Barry Davidson barry.davidson@natpower.com tel 011-44-1235-444-991

http://www.national-power.com/regenesys/brochure_FSET.htm

(I also have a PDF file of their brochure)

==== Some Additional Technical Details ===============

Regenerative fuel cells are a separate class of electrochemical device, which have inert electrodes acting only as an electron transfer surface. The electrodes do not take part in the electrochemical process and so do not limit the energy storage capacity of the regenerative fuel cell. This approach allows the complete separation of power, determined by the module’s electrode area, and energy, determined by the storage tank volume.

There are many electrochemical couples that have been assessed for use in flow battery systems. The Regenesys system uses electrolytes of concentrated solutions of sodium bromide and sodium polysulphide. These salts are readily soluble and present no adverse hazards in handling or storage. They are abundant and available at the necessary degree of purity at moderate cost. The use of other bromide and sulphide salts was investigated during the development phase, but the increased electrochemical efficiency would not necessarily repay the additional costs of the alternatives.

The simplified overall chemical reaction for the cell is given by:

3 NaBr + Na2S4 2 Na2S2 + NaBr3

The conversion of electrical to stored chemical energy and back again can be repeated indefinitely with high turnaround efficiency. There is no memory effect associated with the specific electrochemistry of the Regenesys system, and a full charge/discharge cycle can be completed without limitation of a theoretical maximum depth of discharge.

When commissioned the plant will have the ability to start up in less than 10 minutes or, if held in stand-by mode with the modules filled with electrolytes, in seconds. The plant will have a high rate of dynamic response. When running, the plant will be operated fully connected to the grid, capable of turning from a state of fully charging to fully discharging or any state in between in the order of 0.02 seconds. This performance makes the plant suitable for a number of ancillary service applications such as voltage control and frequency response. In stand-by or shutdown mode there is no self-discharge of the electrolyte stored in the tanks.

The Power Conversion System (PCS) provides the interface between the AC network electrical supply and the variable operating voltage of the DC modules. The four quadrant converter system is designed to transfer both reactive and real power simultaneously and independently from each other.

The PCS allows the operator to select from a wide range of operating modes.
– Pre-defined schedule
– Load following
– Voltage control mode
– Frequency regulation
– Power System Stabilisation
– Constant VAr
– Constant AC power
– Self-commutated to operate as a UPS, or to provide Black Start

And, practical peak shaving and dispatch optimization on networks, which has been limited by the availability of suitable technology.

Building Products from Fly Ash and CO2

Our friends at Materials Technology Ltd. have shared with me the following information about the significant progress they’re making to turn ash into useful materials using Supercritical CO2. Especially noteworthy is the fact that the CO2 is expected to come from the power plant flue gas, and thus represents significant sequestration of CO2 at the same time. Note the information presented on CO2 separation methods.

The original UFTO note about this work appeared on January 1, 1997 – available in the UFTO website database.

Here is the abstract of a paper they will present at the Green Chemistry Conf, Jun 30 – July 2 in Washington (conference details are attached below).

BUILDING PRODUCTS MADE FROM SUPERCRITICAL CARBON DIOXIDE AND FLY ASH

Authors:
Roger Jones, President and CEO,
Materials Technology Ltd, 14525 Rim Rock Road, Reno, NV 89511;
Frank G. Baglin, Prof of Physical Chemistry, Univ of Nevada – Reno,
Bruce A. Salisbury, Plant Engineer, Four Corners Power Plant,
Arizona Public Service, P.O. Box 355, Fruitland, NM 87416.

Introduction:

Coal-fired electric power plant wastes, portland cement, calcium oxide and supercritical carbon dioxide (CO2) are feedstocks to make low-cost, superior roofing shingles, wallboard and other fiber-reinforced products. Flue-gas CO2, recovered using thermally-driven, gas-stripping techniques(1), is permanently bound into the products as carbonates, reducing atmospheric pollution and its contribution to global warming.
Abstract:

The purpose of this patented technology is to produce profitable building products and many other useful things using cemented “dusty” wastes treated with supercritical CO2 (2,3). Products are shaped from a paste made of quick lime, a small amount of portland cement, foamed fly ash and fiberglass reinforcement. Once hydrated, they are treated with supercritical CO2 (preferably recovered from flue gas) to react the hydroxide components, forming carbonates and water and reducing alkalinity to about neutral.

The process has four important advantages:

– Capital required is low (three-year plant and equipment payback).
– Parasitic energy loss to the power plant is low or non-existent.
– There is a sufficiently high value-added component in final products to offset the logistics costs of raw materials and finished goods.

Production of cementitious goods and gas separation technologies are well-settled. Practical gas-separation technologies can be subdivided into four broad categories (4):

Absorption
Membrane separation followed by distillation
Membrane absorption
The appropriate technology depends upon feed stream composition and thermodynamics and upon required quantities of carbon dioxide. In our planned implementation, we will use propylene carbonate absorption. CO2 stripping will occur after sulfur and nitrogen scrubbing.

Forming fiber-reinforced cementitious products like wallboard and roof shingles is also settled technology. Presently, fiberglass reinforced cementitious products demand costly alkali-resistant or plastic-coated glass to prevent alkali-silica reaction. Supercritical carbonation technology allows use of low-cost e-glass instead.

With the exception of foaming agents, fiber reinforcement and portland cement, all raw materials are available on site. The lightweight building products (in this case, fiberglass reinforced roofing shingles and fiberglass reinforced wallboard) are made by cementing foamed fly ash (about 53,000 tons annually for this plant) with calcium oxide (quick lime) and a small amount of portland cement. Both products will be made on continuous lines. After cementing, the products are subjected to treatment with supercritical CO2, again, in a continuous process. The CO2 forms carbonates and carbonated zeolites and reduces the alkalinity of the product to about neutral (pH 7). This permits incorporation of low-cost e-glass fibers without fear of subsequent, harmful alkali-silica reaction. The reinforcement is in the form of both continuous and chopped fiber.

An analysis of the relative inputs to the prototype shingle compared with competing roofing products was made and the results appear in the chart at left (5).

Based on costs of raw materials and energy, our studies indicate that we will be able to sell these waste-based products at pricing points below those of the lowest-priced competing products.

These products are examples of practical, solid-waste-feedstock, chemically bonded ceramics. Many other products can be produced in a similar manner, sequestering large quantities of solid waste and CO2 while offsetting manufacture of products using more energy-intensive systems that increase atmospheric CO2. Examples of such systems include thermoplastics, metals, composites, ceramics and forest products.

As industrial infrastructure in the developed countries ages and requires replacement or renovation, it will be wise to consider supercritical CO2 treated chemically bonded ceramics to reduce energy, raw materials and atmospheric pollution. For developing countries, the benefits are even greater.

In a developing economy, the creation of new industrial infrastructure requires huge investments in transportation systems for feedstocks, raw materials and components. Investment is also required to develop primary, secondary and tertiary manufacturing capacity as well as power plants and facilities to dispose of all types of plant wastes at all levels. Supercritical CO2 chemically bonded ceramic technology reduces much of this investment. Wastes and CO2 simply replace most feedstocks. Ancillary benefits arise from reduction of capital and energy needed to harvest, mine, or otherwise produce raw materials and transport them and intermediate raw materials for secondary or tertiary manufacturing.

Supercritical CO2-treated chemically bonded ceramics rely upon proven, practical technology to produce valuable products from solid waste feedstocks. Capital requirements are lower than conventional production systems, particularly when considering cradle-to-grave economics. Parasitic energy loss to producers is essentially none. Profit margins are high, because most products can be produced with low-cost or no-cost feedstocks.

References:

2 United States Patent 5,518,540 issued May 21, 1996, Cement Treated with High-pressure CO2

3 United States Patent 5,690,729 issued November 27, 1997, Cement Mixtures with Alkali-Intolerant Matter and Method for Making Same

4 21 unpublished papers on methodology for practical recovery of food-grade CO2 from power plant flue gases, Carnegie Mellon University, Professor W.T. Berg, Senior Design Project, March 6, 1996

—————————————

The 2nd Annual Green Chemistry and Engineering Conference: Global Perspectives
June 30 – July 2, 1998
National Academy of Sciences, Washington, D.C.

The Conference is cosponsored by the American Chemical Society, Committee on Environmental Improvement, Division of Environmental Chemistry, Division of Industrial & Chemical Engineering, American Institute of Chemical Engineers, Chemical Manufacturers Association, Council for Chemical Research, National Institute of Standards and Technology, National Research Council, National Science Foundation, Engineering Directorat, the U.S. Department of Energy and the U.S. Environmental Protection Agency, Office of Pollution Prevention & Toxics and Office of Research and Development.

Details, registration form and complete program available at:
http://www.acs.org/meetings/gcec98.htm

Contact Dianne Ruddy at the ACS for further information at
(202) 872-4402, or e-mail d_ruddy@acs.org.