Posts

DOE H2&FC Reviews’03

DOE Hydrogen and Fuel Cells Merit Review Meeting
May 19-22, 2003, Berkeley, CA

(See UFTO Note 10 June 2002 for last year’s meeting.)

“Annual Review Proceedings” are (will be) available:
http://www.eere.energy.gov/hydrogenandfuelcells/hydrogen/pubs.html

DOE’s new organization for hydrogen and fuel cells is in place. Steve Chalk heads the program, and has about 20 direct reports for the many sub-areas. The org chart and key contacts list are available here:
http://www.eere.energy.gov/hydrogenandfuelcells/organization.html

Of course, the program got a huge boost when the president announced the $1.2 billion Hydrogen Fuel Initiative and “FreedomCar” program in the state-of-the-union address this past January.

In a plenary opening session, Steve Chalk gave an overview of DOE’s response, based on a major planning effort involving many stakeholders. (This is all heavily documented on the website.) He showed budgets steadily growing over the next several years.
H2: $47, $55, $77 million (FY 02, 03, 04)
FC: $29, $40, $88 million

The Plan involves a decade of R&D, with commercialization decisions towards the end, and subsequent “transition” and “expansion” in the marketplace. Meanwhile, “technology validation” projects will attempt semi-real world demonstrations of complete integrated infrastructure elements, e.g. refueling stations (major RFP was announced May 6 for a 5 year “learning demo” of hydrogen vehicle infrastructure.)
http://www.eere.energy.gov/hydrogenandfuelcells/2003_solicitation_notice.html

The DOE Secretary will have a new Hydrogen Policy Group (heads of EE, FE, Nuclear, etc.) and the Hydrogen Technical Advisory Committee. Lower down, Steve Chalk will work with the Hydrogen Matrix Group and an Interagency Task Force. Of particular note, a new Systems Integration and Analysis office will be set up at NREL, and several “virtual centers” at national labs focused on specific technical areas.

In each area, goals have been established for the various cost and performance parameters. (e.g., by 2005 electrolytic hydrogen at 5000 psi should be produced at 65% efficiency, for under $3.75/kg. By 2010, moving hydrogen from central production sites to distribution facilities should be under $0.70/kg.) [One kg of H2 is about equivalent in energy content to one gallon of gasoline, making comparisons easier.]

When Chalk’s powerpoint becomes available, it will be worth reviewing if you’re interested in how all of this is going.

This year’s annual review meetings drew a large crowd again. A subset of projects were chosen from each technical area for 20-30 minute presentations, while other investigators were asked to do poster papers instead. Hydrogen and Fuel Cell sessions were held in parallel (last year they were on separate days), making it impossible to cover everything. A two inch thick binder had all the vugraphs, however, and all of it be posted on the website.

Here are the session headings:

Hydrogen

– Production -Biological & Biomass Based
– Production -Fossil Based
– Production -Electrolytic
– Production -Photolytic and Photoelectro-chemical
– Storage – High Pressure Tanks
– Storage – Hydrides
– Storage – Carbon & Other Storage
– Infrastructure Development -H2 Fueling Systems & Infrastructure
– Codes & Standards

Fuel Cells

– High Temp Membranes/ Cathodes/ Manufacturing
– High Temp Membranes/ Cathodes/ Electrocatalysts
– Fuel Cell Power Systems Analysis
– Fuel Processing
– Direct Methanol Fuel Cells
– Fuel Cell Power System Development
– Fuels Effects
– Sensors for Safety & Performance
– Air Management Subsystems

A few highlights:

– Codes and standards were compared to the “iceberg below the surface” (i.e. that sunk the Titanic). The voluntary standards-making process in this country, along with the 40,000 independent local jurisdictions, represent a huge educational and process challenge to make society ready for hydrogen. The recently announced fueling station in Las Vegas needed 16 separate permits, and the local fire marshal was the toughest to deal with.

– Carbon nanotube storage is living on borrowed time. It has the distinction of a stern “Go-No go” decision that’s been put in its path (2005), and the science seems not to be making the greatest progress.

– Another Go-No Go decision is set for late 2004, for onboard fuel processing.

– Photolytic H2 production makes slow progress, but researchers close to it acknowledge it’s practical application can only happen if the right materials are found. The search continues using “combinatorial” methods. (see UFTO Note 2 April 2003).

– The fuel cell work seems mostly to do with the tough slugging it out with materials and costs, finding formulations and configurations that gradually improve the situation. A fair amount of attention is going towards higher temperature PEM cell membranes, where hydrogen purity is less of an issue, however no breakthroughs seem imminent.

– Quite a bit of attention is going to fueling systems. Several projects involve the building of equipment and actual demonstration fueling stations and “power parks”. DTE and Pinnacle West are the only utilities that seem to have really pursued this; each has a major demonstration project in development.

In view of the volume and technical nature of this material, let me suggest that I can dig deeper into any particular area of interest to you, but that otherwise the DOE website has all the documentation on the programs and specific projects.

^^^^^^^^^
Other Hydrogen news:

You may have seen Wired 11.4 (April). The cover story is by Peter Schwartz, the famous futurist, who proclaims that a full-blown hydrogen economy is urgent and inevitable. I saw him present the argument at a seminar at Stanford recently, and found it very short on practical specifics and less than compelling. For one thing, he asserts that nuclear will be the major source of energy to make hydrogen a decade or two from now.
http://www.wired.com/wired/archive/11.04/hydrogen.html

Along the same lines, the June issue of Business 2.0 came last week, with a feature story about the head of Accenture’s Resource Group, Mary Tolan, and her blunt challenge to the energy industry to go invest like crazy to make the hydrogen economy happen quickly. She says it’s the only way the oil majors in particular will be able to continue to make big profits in the future. She apparently let loose with this at CERA Week, back in February. Business 2.0’s website (http://www.business2.com) won’t have it online for a few weeks, but I was able to locate a reference to an Accenture utility industry event that outlines the argument.
http://www.accenture.com/xd/xd.asp?it=enweb&xd=industriesresourcesutilitiesagenda_monday.xml

Curious to know what you think. In my own opinion, both sound over the top. We’ve got a ways to go before the technology, or the society, will be ready for hydrogen on a massive scale. I’ve written to Ms. Tolan to see if I can get more details as to their reasoning.