Bipolar NiMHydride Battery

Electro Energy, Inc. (EEI) has developed a new type of rechargeable nickel-metal hydride (BP Ni-MH) battery using a bipolar configuration. A combination of unique materials, a design, and a production process make possible a lower cost technology which out-performs present commercial nickel-metal hydride and lithium polymer batteries in both power and energy.

A key advantage of a bipolar format is that the current path is the shortest possible. In a series arrangement, current passes directly through the separator, across its entire area. This eliminates the need for lugs and cell interconnections, with the additional internal resistance, sealing problems, and structure they bring.

The classic bipolar design (similar to most fuel cell stacks) involves a stack of metal plates, each with an anode applied to one side and a cathode to the other. For batteries, the problem of sealing the edges has proven difficult. EEI’s solution is to make each cell a stand-alone sealed flat wafer. The wafer cells are stacked up to make a higher voltage package.

EEI has developed and patented both the design of their battery and the production process for its manufacture. Prototypes exist and have been tested extensively. The US Air Force is evaluating units for use on F16 (and NAVAIR for the F18) jet fighters (1/3 the weight and volume of what they’re using now).

Conventional Ni-MH rechargeable batteries represent a $3 billion market currently, and EEI expects to dominate that and other markets, because their battery will deliver more energy and power per unit volume and per unit weight, at lower cost. Cycle life is in excess of 1000 cycles in deep discharge use, and over 12,000 cycles at 40% discharge. Cost will be 1/2 that of Li -Ion, and there are no toxics substances. The technology will be very competitive in the applications requiring high voltage and power, e.g. hybrid vehicles.

The company is seeking equity investment, having received over $15 million in government and other grants, particularly from DOD and DOE. A full business plan is available.

Contact: Mike Eskra, President & COO
Electro Energy Inc, Danbury CT
203-797-2699 meskra@electroenergyinc.com
http://www.electroenergyinc.com

Cell Details
As a departure from classic cylindrical or prismatic battery packaging approaches, EEI’s is a flat, wafer, bipolar design for the nickel-metal hydride chemistry. Individual flat wafer cells have outer contact faces with one positive electrode, a separator and one negative electrode. The contact faces serve to contain the cell and make electrical contact to the positive and negative electrodes. The the two electrode faces are completely sealed at the edge to contain the potassium hydroxide electrolyte. To make a multi-cell battery, identical cells are stacked one on top of each other such that the positive face of one cell contacts the negative face of the adjacent cell resulting in a series-connected battery. Power is taken off at the ends of the cell stack. An outer container holds the cells in compression and provides structural integrity for the stack.

This design has several advantages. The need for conventional terminals, tabs, current collectors, and cell containers is eliminated. Use of available space is maximized, with the headspace for tabs and terminals required in conventional cells eliminated. The path that current has to move within the electrodes and from cell to cell is minimized, since the current flows out on the entire surface of the electrodes. Battery impedance is reduced, making this design particularly effective for high rate, power applications. The wafer stack has excellent thermal management properties. Cells act like cooling fins, conducting the heat out to the side. Compared to conventional cylindrical and prismatic packaging designs, there is considerable reduction in cost, weight, and volume.

Bipolar NiMHydride Battery

Subject: UFTO Note – Bipolar NiMHydride Battery
Date: Fri, 28 Feb 2003

Electro Energy, Inc. (EEI) has developed a new type of rechargeable nickel-metal hydride (BP Ni-MH) battery using a bipolar configuration. A combination of unique materials, a design, and a production process make possible a lower cost technology which out-performs present commercial nickel-metal hydride and lithium polymer batteries in both power and energy.

A key advantage of a bipolar format is that the current path is the shortest possible. In a series arrangement, current passes directly through the separator, across its entire area. This eliminates the need for lugs and cell interconnections, with the additional internal resistance, sealing problems, and structure they bring.

The classic bipolar design (similar to most fuel cell stacks) involves a stack of metal plates, each with an anode applied to one side and a cathode to the other. For batteries, the problem of sealing the edges has proven difficult. EEI’s solution is to make each cell a stand-alone sealed flat wafer. The wafer cells are stacked up to make a higher voltage package.

EEI has developed and patented both the design of their battery and the production process for its manufacture. Prototypes exist and have been tested extensively. The US Air Force is evaluating units for use on F16 (and NAVAIR for the F18) jet fighters (1/3 the weight and volume of what they’re using now).

Conventional Ni-MH rechargeable batteries represent a $3 billion market currently, and EEI expects to dominate that and other markets, because their battery will deliver more energy and power per unit volume and per unit weight, at lower cost. Cycle life is in excess of 1000 cycles in deep discharge use, and over 12,000 cycles at 40% discharge. Cost will be 1/2 that of Li -Ion, and there are no toxics substances. The technology will be very competitive in the applications requiring high voltage and power, e.g. hybrid vehicles.

The company is seeking equity investment, having received over $15 million in government and other grants, particularly from DOD and DOE. A full business plan is available.

Contact: Mike Eskra, President & COO
Electro Energy Inc, Danbury CT
203-797-2699 meskra@electroenergyinc.com
http://www.electroenergyinc.com

Cell Details

As a departure from classic cylindrical or prismatic battery packaging approaches, EEI’s is a flat, wafer, bipolar design for the nickel-metal hydride chemistry. Individual flat wafer cells have outer contact faces with one positive electrode, a separator and one negative electrode. The contact faces serve to contain the cell and make electrical contact to the positive and negative electrodes. The the two electrode faces are completely sealed at the edge to contain the potassium hydroxide electrolyte. To make a multi-cell battery, identical cells are stacked one on top of each other such that the positive face of one cell contacts the negative face of the adjacent cell resulting in a series-connected battery. Power is taken off at the ends of the cell stack. An outer container holds the cells in compression and provides structural integrity for the stack.

This design has several advantages. The need for conventional terminals, tabs, current collectors, and cell containers is eliminated. Use of available space is maximized, with the headspace for tabs and terminals required in conventional cells eliminated. The path that current has to move within the electrodes and from cell to cell is minimized, since the current flows out on the entire surface of the electrodes. Battery impedance is reduced, making this design particularly effective for high rate, power applications. The wafer stack has excellent thermal management properties. Cells act like cooling fins, conducting the heat out to the side. Compared to conventional cylindrical and prismatic packaging designs, there is considerable reduction in cost, weight, and volume.

Virtual Utility Technology License Available

The “Virtual Utility” (VU) concept provides intelligent coordination and aggregation of distributed resources through web-based connectivity. ABB developed an extensive portfolio of technology and IP which is now being made available for license, as an “enabler” in distributed generation markets. This comes as a result of the company’s recent move to tighten its business focus.

The ABB VU technology is centered on an internet-accessible control center by which clients or aggregates of clients can intelligently monitor and control distributed resource assets. Both distributed generation (DG) and distributed storage assets can be connected by the VU into a single highly flexible integrated power resource.

Both utilities and large consumers of energy will use the VU. Once commercialized, the VU can be sold as either an enterprise-wide “micro SCADA-like” system or as an Internet service provider where customers can call in to monitor and control their assets. The value provided by such a product could consist of any or all of the following:

– Universal monitoring ? the VU can offer the possibility of monitoring all distributed resource assets regardless of type, manufacturer, or date of manufacture.
– Power reliability ? with interconnected DG one can guarantee higher availability for important loads.
– Peak shaving ? fast dispatchable generation can avoid maximum demand surcharges and curtailment orders.
– Network optimization ? connection of DG units can be optimized to ensure the most economic and secure network; microgrids can be operated where bulk power supply reinforcement cannot be justified.
– Network safety ? protection settings can be monitored and calculated dynamically to ensure that power flows do not affect network protection parameters.
– Energy trading ? aggregated units can provide surplus energy from non-DG sources, which then can be sold.

Several business models are possible using such tools. Revenues can possibly be generated proactively ? by engaging in peak shaving, energy trading, premium power, etc. or by providing a service bureau business to allow others to access and control the DG equipment through a server that contains the required intelligent applications and communication technology. This latter arrangement relieves the customer of the responsibility of maintaining the database, updating software applications, etc. and provides the financial attractiveness of a lease rather than a purchase.

The Virtual Utility can have a significant impact on the bottom-line of a DG project or series of projects. Although the cost of the control and communication system is usually a small part of the cost of the project, its performance can be a determining factor in overall economic success. An intelligent control system can ensure the lowest energy and maintenance costs, the largest profit, the best payback, or even the greatest system reliability. It also can aggregate many small power generators into a more marketable mass.

The VU concept can be applied to both new and existing assets. As a minimum, the retrofit to existing emergency back-up generators would provide value in automatic testing and reporting. Further benefits of peak shaving and aggregation of load can also be realized depending on the VU owner.

VU also solves another serious future issue for distributed generation — the ability to connect many various distributed devices involving different technologies and manufacturers. VU thus becomes the infrastructure for all distributed resources and an enabler for market expansion.

The ABB concept is focused on low installation and operating cost, flexible control intelligence, and universal adaptability along with possible integration with existing power system assets. Low costs are achieved through technologies such as a browser based data server, wireless LAN, and the communication and control network. Control intelligence is achieved via economic planning and optimization algorithms, utilizing situation specific dispatching levels, and a hybrid central / local control logic. This platform is universally accessible to all distributed resources through intelligent electronic device configuration and information handling processes.

This intellectual property is represented by a patent portfolio, technical documentation, business model and market evaluation, and technical expertise related to hardware, software, and analytical tools. Technical assistance would be available to assist the integration of this technology into a current system or developing and commercializing a new system.

For more information, contact UFTO, if you or any company you work with might have an interest.

Leveraging the Feds

Federal research programs represent an opportunity for private industry to get additional resources applied to their RD&D projects and other business goals. Many companies, and a few utilities, have been successful at this for a long time.

This discussion is an initial introduction to what it takes to tap the Feds, and DOE/Labs in particular. If there is interest, UFTO stands ready to dig deeper.

The good news is that: it can be done, as evidenced by the companies that do it successfully and repeatedly (“best practice”). The bad news is that it isn’t easy, especially starting fresh. “Startup costs” may be considerable, and the ongoing costs are significant as well, particularly administrative. Companies with a lot experience have advised: don’t do it for a couple $100K; be in for the long haul; it’s a means, not an end; and start with knowing what you want to do. Bottom line– there are resources, programs, and mechanisms that can lead to leverage, but if you want to drink, you have to go to the well.

Federal Tech Transfer

Starting in the early 80’s, Congress and executive orders have been steadily reshaping U.S. federal research policy to expand the importance of technology transfer. Over time, it has become easier and easier for federal agencies to grant private parties the rights to technology and IP developed at federal labs. Working with industry is now the norm.

The emphasis on tech transfer is aimed to get results of federal R&D programs into use — thus fulfilling a (new) mission to help U.S. industry be more competitive. Where these efforts provide resources, industry gets a chance for leverage –it’s just the other side of the same coin.

Where federal spending is targeted at policy goals (such as conservation or advancing a new technology), utilities can be particularly appropriate partners. Another point to keep in mind–the labs are always looking for ways to maintain funding for their programs. An outside funder can gain tremendous leverage by adding resources to ongoing programs which can adapt to meet the funder’s own requirements.

If a private company wins a government award to develop new technology, it usually has to come up with matching funds (especially if it expects to hold on to the resulting IP). From the company’s point of view, their portion is leveraged substantially compared with a go-it-alone approach. (In the case a startup, an equity investor who provides the matching funds will find that his money goes that much farther.)

For a good overview and introduction to federal tech transfer, see the Federal Lab Consortium’s “Green Book”, available online or in hardcopy.
http://www.federallabs.org/ (scroll down, on left margin under “Resources”)

There are many contracting mechanisms for working with the government, ranging from outright grants to actual fee-for-service. National labs in particular like to say that contracting should not be an obstacle, that they will find a way to make it work. (Non-U.S. companies shouldn’t be discouraged from looking into opportunities– there usually are ways to deal with restrictions that might otherwise interfere.)

– CRADA (Cooperative R&D Agreement)
– Cost Share/Cofund
– Licensing
– User Facilities
– Work-For-Others
– Personnel Exchange
– Data & Information Exchange
– Consulting & Technical Assistance (by Lab personnel)
– Contracts
– Financial Assistance
– Grants (SBIR, Clean Coal, STTR, TRP, ATP, etc.)
– Consortia (“Industry Partnerships”)
– Informal Collegial Contact!

The main agency for energy is obviously DOE, and other agencies have extensive energy programs as well (e.g., DOD , NASA, Commerce, EPA, Agriculture, Transportation, Interior, etc.). Within DOE, two major programs account for most of the relevant activity:
– Energy Efficiency & Renewable Energy (EREN) http://www.eren.doe.gov/
– Fossil Energy (FE) http://www.fe.doe.gov/

Solicitations are handled by headquarters, regional program offices, or labs. NREL and NETL in particular seem to be heavily involved in supporting headquarters with administering solicitations and managing programs.
NREL-Nat’l Renewable Energy Lab, CO http://www.nrel.gov
NETL- Nat’l Energy Technology Lab; WV, PA — formerly METC & PETC
http://www.netl.doe.gov/

Solicitations Listings

EREN provides this site as a general starting point
>> http://www.eren.doe.gov/solicitations/

DOE’s Seattle Regional Office publishes a comprehensive compilation of solicitations — from multiple agencies and foundations — relating to energy efficiency, renewable energy, and sustainable development. They maintain online a 15-20 page “Open Solicitations Summary” and also send out a monthly email announcement of all new items.
>> http://www.eren.doe.gov/sro
Go to “Open Solicitations” link to see the new monthly listings. Also note instructions on how to be added to the email distribution. The link “Open Solicitations Summary” will take you to the archive where you can download the complete list. (Be sure to look at the last page of the summary for additional information about sources of information.)

On behalf of Fossil Energy, NETL provides alerts, solicitations, CRADA lore, etc., at:
>> http://www.netl.doe.gov/business/
The “Solicitations” link gives a list of current and future opportunities (plus a link to archives).
>> http://www.netl.doe.gov/business/solicit/main.html

All DOE solicitations are now handled through the new centralized Industry Interactive Procurement System (IIPS). It is used to post solicitations and amendments, receive proposals/applications, and disseminate award information. Entities wishing to participate in these solicitations will need to register at the IIPS Webster. Proposals will only be accepted through IIPS, unless otherwise indicated within the solicitation document.

IIPS takes some getting used to. “Guest” users can see most everything, but navigation is not easy. Guest users click on “Browse Opportunities”, and are stuck scrolling through 100’s of listings by number. It’s worth registering for a password, otherwise you can’t use the “Main View” which gives you much better sorting capabilities (e.g., by contracting office).
>> http://e-center.doe.gov or http://pr.doe.gov

[Caution: Don’t be surprised to see that “solicitations” in IIPS include everything DOE buys, from research (RFPs) to light bulbs to janitorial services. The Seattle list is a valuable filter.]

~~~~~~~~~~~~~~~

Some additional links that provide information and guidance on working with the government:

Argonne National Lab Tech Transfer Office
http://www.techtransfer.anl.gov/

Laboratory Coordinating Council
Specifically geared to the major “Industries of the Future” from the DOE Office of Industrial Technology.
http://www.oit.doe.gov/lcc/

DOE Hydrogen and Fuel Cell Program
— Sign up to receive notices (right margin, at the bottom)
http://www.eren.doe.gov/hydrogenandfuelcells/

~~~~~~~~~~~~~~~

Advanced Technology Program: partners with the private-sector to develop broadly beneficial technologies. ATP applies across almost any technology area–R&D, (*not* commercialization). Proposal teams often include private companies, startups, labs, universities, etc.
>> http://www.atp.nist.gov/

~~~~~~~~~~~~~~~

Utilities and DOE

Some utilities have been working closely with DOE for a long time, and others are just now entering the game.

Electricity Advisory Board http://www.eab.energy.gov/
Established Nov 2001 to advise on electricity policy issues. Specifically, the DOE’s electricity programs; current and future capacity of the electricity system; issues related to production, reliability and utility restructuring; and coordination between the DOE and state and regional officials and the private sector on matters affecting electricity supply and reliability. Chair is Lynn Draper, CEO of AEP. Many of the CEO members come from utilities that are household words in DOE. (NiSource, DTE, SoCo, etc.)

The Clean Coal Program, which began mid 80’s, has funded major projects with companies like AEP, Tampa Elec, SoCo, etc. The recent solicitation (Clean Coal Power Initiative Round One Proposals – 8/02) attracted a number of new players (Ameren, IP&L, LG&E, Wepco, etc.).
http://fossil.energy.gov/techline/tl_ccpi_round1_proposals.shtml
http://fossil.energy.gov/techline/tl_ccpi_rd1proposals.html

Efficiency & Renewables likewise sees old and new companies at its conferences and responding to its solicitations, particularly in DG, Storage, Hydrogen, etc. (SCE, Nipsco, DTE, Com Ed, SRP…)

~~~~~~~~~~~~~~~~~~~~~

Here is some advice compiled from conversations with people at DOE and in the utilities.

Know what DOE is trying to do that fits with your company’s goals
(attend workshops, review meetings, conferences etc.)

Get to know the people and programs, and understand what they’re up to.
( might be able influence what goes into an RFP)

Information/access is public, but only some companies bother to look.
extent of involvement depends on objectives

Work out a strategy, pick out a couple of areas, and put foot in the door.

Key is to find a (programmatic) match and a (contracting) vehicle.
(most DOE work is competed and cost-shared)

Follow the solicitations; understand procedures

Congressional earmark is a possibility, but doesn’t make any friends in DOE

Companies participate (in R&D/DOE) for variety of reasons
(PR, reg. pressures, …and sometimes… actual business goals!)

Don’t need to be insider (but it doesn’t hurt). DOE welcomes new faces and new ideas.