Posts

New Stirling Engine with Higher Temperature, Efficiency

The Stirling engine is a piston engine that can operate with a variety of external heat sources (i.e., “external combustion”, when a fuel is burned to supply the heat). A contained gas, typically helium, is cyclically heated to high temperatures and pressures to provide force on a piston, which then drives an electric generator. The difference in temperature between the heat source and a heat sink (typically the atmosphere) and the effectiveness of the transfer of heat into and out of the working gas is what determines its performance. Stirling engines are operating today with fuels as diverse as natural gas, fuel oil, and biomass (e.g., wood chips) and also with concentrated solar energy. Stirling engines typically have low maintenance and high reliability, and when paired with clean fuels can be an environmentally friendly way to generate power.

There have been many attempts over many decades to develop a commercially viable stirling engine, and recently there has been renewed interest and progress. (Try putting “stirling engine” in to a search engine like google, and stand back.)

Here are a few of the current players:
– STM Power Inc., Ann Arbor MI, has attracted industry and investor interest with their four-cylinder “swash-plate” design. http://www.stmpower.com
– Stirling Energy Systems, Phoenix AZ, plans to use the Swedish Kockums engine in solar dish concentrator developed with Boeing (actually Northrup). Rumor has it the company may be shortlived, having not been able to raise funding.
– Whisper Tech is a recent entrant from New Zealand, focused on residential cogeneration (aka micro combined heat and power – MCHP).
http://www.whispertech.co.nz/
– Sigma PCP developed in Norway (www.sigma-el.com) is now a wholly owned subsidiary of Ocean Power (http://www.powerco.com); also directed at MCHP.

Alternative Designs, Inc. (ADI) has developed an advanced “Dual Shell” Stirling engine which permits operation at higher temperatures and thus higher efficiencies. They believe that this “Dual Shell” system and other improvements will allow the company to achieve a fuel to electricity conversion efficiency as high as 50%. They estimate that their costs could drop to around $400/kw. The engine has multi-fuel capability and full power levels at high altitudes. The 25kw unit is small and compact– roughly 2 feet high and one foot in diameter.

In early 2001, ADI will complete a 25 kW prototype system and begin a performance validation program. Through early 2002, ADI will develop five additional prototypes and begin work to commercialize the product. ADI plans to sell complete power generation systems ranging from 25 to 100 kW beginning in late 2002.

ADI’s advanced Dual Shell system utilizes a host of patent pending and proprietary technologies that will significantly improve the efficiency of a Stirling engine while simplifying construction and reducing manufacturing costs. Principle among these are a dual pressure vessel design which allows the engine to operate at higher temperatures while still using relatively common materials, and a reduced cost heater head design which reduces the number of manufacturing steps by a factor of ten.

The are looking for equity investors and a strategic partner. I can supply additional details and a copy of the business plan.

Contact:
Wayne Bliesner, President, 425-402-9632, altdes@aol.com

Additional Background
ADI’s advanced Dual Shell system has the high efficiency and low system cost required for success in the power generation market. Its patented dual shell design enables the engine to operate at temperatures much higher than existing Stirling engines, increasing the relative efficiency by 20%. It also uses a specially designed regenerator that improves the relative efficiency another 5% by recycling the waste heat into the hot cycle of the working gas. On most Stirling engines the heater head component is responsible for 50% of the system cost — primarily due to the complicated series of welds required. On the advanced Dual Shell system a patented design reduces the number of welds from 280 to 30. ADI had also invented a proprietary process that allows all 30 welds to occur simultaneously in a single step. Tests of this process have been conducted with outstanding success. These and several other patented or proprietary design and manufacturing improvements will allow ADI to produce high quality, low cost engines.

ADI has used advanced modeling techniques and testing to reduce the development risk of the Dual Shell system. For instance, software developed by NASA to study Stirling engine performance has been used by both ADI and independently by NASA to validate ADI’s power and efficiency estimates. The results have instilled a high level of credibility in the advanced Dual Shell design. In addition, numerous prototypes of key components have been built to test and simplify manufacturing methods.

Reliability and flexibility have been designed in from the start. ADI projects that these engines can be run continuously for ten years with only four maintenance intervals. The basic system is expandable to allow easy development of higher power systems by simply connecting several units in series. (ADI has conceived of a way to allow each unit to be individually de-clutched from the power train so that, on the rare occasion that maintenance is required, the multi-unit generator set may remain safely and continuously on-line — operating at slightly higher capacity on the remaining units.)

ADI’s prototype engine drives a standard “off-the-shelf” electric generator at 1800 rpm to produce a minimum of 25 kW of continuous power at 480 Volts and 60 Hz.

Technology Transfer Opportunities – Oak Ridge National Laboratory

UFTO

PROPRIETARY

Final Report

Technology Transfer Opportunities in the Federal Laboratories

Oak Ridge National Laboratory

Oak Ridge, Tennessee

June 1998

Prepared for:

Utility Federal Technology Opportunities (UFTO)

By:

Edward Beardsworth

Consultant

Contents:
Summary
Overview & Organization
Technologies & Programs

This report is part of a series examining technology opportunities at National Laboratories of possible interest to electric utilities

———————————————————–

This report is proprietary and confidential. It is for internal use by personnel of companies that are subscribers in the UFTO multi-client program. It is not to be otherwise copied or distributed except as authorized in writing.

———————————————————–

Summary

This report details findings about technology and technology transfer opportunities at the Oak Ridge National Laboratory that might be of strategic interest to electric utilities. It is a major update and revision materials developed previously, and is based on a visit to the lab in April 1998, and also draws from various publications, collateral information and website content.

Acknowledgments:

A special note of thanks to Marilyn Brown for arranging the agenda and her gracious and tireless support, and to all the ORNL staff who gave generously of their time and attention.

Also to Mr. Scott Penfield of Technology Insights, who accompanied the visits (as a representative of one of the UFTO utilities) and kindly provided his written account of the meetings for use in the preparation this report.

ORNL — Overview & Organization

Oak Ridge National Laboratory (ORNL) is a “GOCO” lab (government-owned, contractor operated). Lockheed Martin Energy Research Corp. is the contractor that manages ORNL. (Lockheed Martin also manages the Y-12 Plant in Oak Ridge, Idaho National Engineering Lab and Sandia National Lab.)

ORNL has a matrix organizational structure, where “divisions” aligned primarily by discipline have the people, and “programs” have the projects and budgets. On some occasions, divisions do get funds and projects of their own. ORNL finds that matrix management can work well if there is a balance of power and the right incentives.

Both divisions and programs live in research “ALD’s” or Associate Laboratory Directorates, headed by Associate Lab Directors who along with other administrative and support groups report to the Laboratory Director (Alvin Trivelpiece).

ORNL’s four research ALD’s are:

=> Energy and Engineering Sciences — Gil Gilliland 423-574-9920

(Div: Engineering Technology, Fusion., Instrum & Control)

(Prog: Energy Effic/Renew Energy, Energy Technology, Fossil Energy, Nuc Technol)

=> Life Sciences and Environmental Technologies

(Div: Chemical Technol, Energy, Environmental Sci, Life Sciences)

=> Adv. Materials, Physical and Neutron Sciences

(Div: Metals & Ceramics, Physics, Solid State, Chemical/Analytical Sci . . .)

=> Computing, Robotics, and Education

(Div: Computer Science and Mathematics, Robotics and Process Systems…)

There is work in all four ALDs of potential interest to utilities. The point of contact for this study was established through the Energy Efficiency and Renewable Energy Program, which oversees activities involving 11 different research divisions. Contact was also made with the Fossil Energy Program, with a similarly broad scope. Divisions encountered include Engineering Technology, Instrumentation & Control, Metals & Ceramics, and others.

Staffing level is now at approximately 5000, of which 1500 are scientists, of which about 1/2 are PhDs. ORNL’s 1997 budget was about $550 million. Of this amount, the largest program areas were Energy Research (28%), Environmental Management (25%) and Energy Efficiency (16%). Nuclear programs, which were once the principal focus of the Laboratory, are identified at a level of 4% in the overall budget; however, when supporting research topics (e.g., High Flux Isotope Reactor (HFIR), materials, NRC Programs, etc.) are included, some $100 million can still be identified as nuclear related.

A major new initiative at ORNL is the Spallation Neutron Source facility. The 1999 budget year will constitute a major test for this project, as it will include a construction line item for the first time. If approved, construction is expected to take 6-7 years. A new ORNL directorate has been established to oversee the Spallation Neutron Source project.

———————–

Key Contacts:

Website: http://www.ornl.gov

Primary UFTO contact:

Energy Efficiency and Renewable Energy Program:

A.C.(Tony) Schaffhauser, Director, 423-574-4826, schaffhausac@ornl.gov

Marilyn Brown, Deputy Director, 423-576-8152, brownma@ornl.gov

Working with ORNL:

Technology Transfer: (Licensing and CRADAs)

Dean Waters, Acting Director, Office of Technology Transfer,

423-576-8368, watersda@ornl.gov

Sylvester Scott, Director, Licensing, 423-576-9673, scotts@ornl.gov

Partnerships: (CRADAs, User Program, Personnel Exchanges, Guest Research Assignments)

Louise B. Dunlap, Director, Office of Science and Technology Partnerships,

423-576-4221, dunlaplb@ornl.gov

Public Relations: Joe Culver, Director, Public Affairs,

423-576-0235, culverjw@ornl.gov

Partnership Mechanisms

ORNL makes use of an increasingly broad array of contracting mechanisms, including CRADAs, Work for others, User Facility Agreements, etc. Greater use of simpler standard formats makes the process much quicker than in the past.

They are seeing an increasing number of “100% funds-in CRADAs” (i.e. no cost sharing by the lab) from industry, as a cheaper alternative to work-for-others with essentially equivalent intellectual property rights. The Lab also will have as many as 4000 guest assignments per year, 1/4 of which are from industry, where visitors use the facilities or work with staff on CRADAs, etc.

———————–

Energy Efficiency and Renewable Energy Program

Tony Schaffhauser, Director 423-574-4826 schaffhausac@ornl.gov

Marilyn Brown, Deputy Director 423-576-8152 brownma@ornl.gov

The EE/RE Program is a matrix organization that draws on several line divisions at ORNL for the majority of its personnel and technical facility resources, to set up multi disciplinary teams. DOE is the sponsor for most of the work, but they see industry and the public as the real customer.

ORNL budget expenditures controlled through the EE/RE Program office amount to some $80 million. The ORNL Energy Efficiency/Renewable Energy (EE/RE) budget was lower in 1996, but the level now appears to be stable.

Major Research and Development Areas

=> Transportation systems, including advanced automotive technologies, advanced materials, utilization of alternative fuels including biofuels, and transportation data.

=> Efficient building systems and for state and community programs, including heating, cooling, and refrigerating equipment; roofs, walls, and foundations; insulating materials; technology transfer; and retrofit of existing residential and commercial structures.

=> Industrial processes, such as bioprocessing, electric motor systems, advanced turbine systems, advanced materials, industrial heat pumps, and evaluations of energy-related inventions.

=> Utilities, including high-temperature superconductors (for transformers and transmission cables), power transmission and distribution systems, electric and magnetic field effects, biomass for power generation, and international programs (including IEA and APEC programs).

Technologies & Programs

Superconducting Technology Program for Electric Energy Systems

Fossil Energy Technologies

Real-Time Corrosion Monitoring

Hot Gas Filters

Materials R&D

Furnace Wall Corrosion with retrofit low-NOx burners

Effects of Coal impurities on fireside corrosion

Improved Stainless Steels

“Perfect Microstructures”

Nickel-Aluminide Alloys

Sulfidation Resistant Alloys

Building Technology Center

Frostless Heat Pump

High Efficiency Refrigerator (1 kwh/day)

Power Systems Technology Program

Energy Conservation Standards for Distribution Transformers

Flywheels and Energy Storage Technologies

Utility Restructuring and Electric Power Ancillary Services

Grid Reliability-Control Center Survey

Electric and Magnetic Fields Bioeffects

Research and Public Information Dissemination (RAPID) Program

Advanced Turbine Systems

Bioenergy Program

Motor, Steam, and Compressed Air Challenge Programs

Oak Ridge Centers for Manufacturing Technology (ORCMT)

Electric Machinery Center

Power Electronics Technology Center and Inverter Technology

Instrumentation & Controls

Machine Condition Monitoring and Diagnostics

Electrical Signature Analysis (ESA) for Utility Applications

Nonlinear data analysis–Component Failure Prediction

NRC/INPO plant database

Photonics and Hybrid Lighting

Superconducting Technology Program for Electric Energy Systems

Bob Hawsey 423-574-8057 hawseyra@ornl.gov

Web sites: http://www.ornl.gov/HTSC/htsc.html

http://www.eren.doe.gov/superconductivity/

(See special report and series of articles on “Superconductivity in Electric Power,”

pp 18-49, IEEE Spectrum, July 1997)

The discovery of high-temperature (i.e., above the boiling temperature of liquid nitrogen) superconductor materials dates to 1986. Since that time, the challenge has been to develop these brittle, ceramic-based materials into a form that can be produced and practically used. DOE research in this area has taken a major step increase, from $19 million in 1997 to $32 million in 1998. (By comparison, Japan is investing $100 million/year in superconductor research.)

DOE HTS Program

Contacts:

Jim Daley, Team Leader, 202-586-1165, james.daley@ee.doe.gov

or Joe Mulholland, Utility Liaison

202-586-1491, joseph.mullholland@hq.doe.gov

The DOE HTS program supports a balanced technology development effort. Wire and device technologies are developed through a large number of collaborative projects between U.S. national laboratories and industry, and systems technologies are supported through the SPI and other vertically integrated project teams.

DOE’s Superconducting Partnership Initiative (SPI) is a systems technology program designed to accelerate the development of HTS electric power systems. Begun in the fall of 1993, the SPI encourages the formation of vertically integrated teams comprised of partners who usually do not interact in the development cycle, involving close collaboration among system integrators, wire and device manufacturers, end-users (typically electric utilities)

Major projects include

– 5,000 hp high-temperature superconducting (HTS) motor

– 100 MVA HTS generator,

– 115 kV and 12.5 kV HTS transmission cable (2 projects)

– 5/10 MVA HTS transformers (2 projects)

– 15 kV HTS fault current limiter (2.4 kV successfully tested in 9/95 at a utility host site)

Fault Current Limiter

Later this year, pre-commercial (alpha) prototype will be tested by So Cal Edison and Lockheed Martin. Rating is 15-kV, normal 2 kA, intercepts/reduces by 80% a 20-kA peak symmetric or 45 kA peak assymmetric fault. Also functions as a 1/2 cycle circuit breaker. If demo successful, Edison will install it at a substation, and anticipates $1million in savings from avoiding need for a second bus. Next stage will be beta units.

Contact: Eddie Leung, Lockheed Martin program manager

619-874-7945, ext. 4636, eddie.leung@lmco.com

ORNL is participating in two of these partnerships.

Transformers — There is a strong need for medium power transformers (10-150 MVA) that are smaller, more efficient and free of fire hazard, to meet the growth in urban power density. These transformers will go inside building and in multistory substations, and provide higher ratings from existing substations.

— Waukesha Electric Systems (WES), Waukesha, WI

For the Waukesha program, ORNL is responsible for the engineering, design and science of the cooling system, while Intermagnetic General is producing the HTSC coil. WES did the core, instrumentation tank, pumps and test rig. An initial 1 MVA prototype has been constructed and entered testing at WES in February 1998. Initial results are good–the first operational US HTSC transformer easily sustains 2X overloads. Rochester Gas & Electric (RG&E) and Rensselaer Polytechnic Institute (RPI) participated in this initial demonstration.

The next step will be a 5 MVA system, which will provide power to the WES plant beginning in 1999. A larger utility advisory group is participating in this second step (includes several UFTO members). The initial commercial target is a transformer in the range of 10-30 MVA.

Contact: Pat Sullivan, VP Marketing, Waukesha, 414-547-0121, x 1531.

There is a separate transformer development effort that involves ABB, EdF, Los Alamos National Lab (LANL) and American Superconductor.

Cable — HTSC Cables hold the promise of far greater capacity– 5X the power in the same 8″ diameter pipe of conventional buried cable, and without the losses, heat, oil and range limitations.

— Southwire,Carrolton, GA

The Southwire HTSC cable project is expected to culminate in an initial demonstration at Southwire in 1999. The planned 100 ft, 3-phase, 12.4 kV, 1250 Amp cable will provide power (30 MVA) to Southwire facilities. Southern Co, Georgia Transmission Co, and So Cal Edison are partners. DOE is providing half of the $14 million. Southwire has built a 200 ft clean room manufacturing facility, and recently delivered a 5 meter test cable to ORNL for testing.

Pirelli and Los Alamos are pursuing a parallel HTSC cable initiative, with participation by Detroit Edison. The initial objective is a 25 kV line.

Other HTSC development initiatives mentioned include motors/generators (including flywheel motors/generators under development at Boeing) and kaolin magnetic separation equipment being developed by Dupont for the paper industry.

NOTE- More uility participation is needed–to provide advice, and as partners, cofunders and beta test hosts. Any kind of innovative proposal is more than welcome.

RABiTS (TM) Process for Coated High-Temperature Superconductors

http://www.ornl.gov/~vhk/rabits.html

Oak Ridge researchers have produced a roll-textured, buffered metal, superconducting tape with a critical current density of 300,000 amperes per square centimeter in liquid nitrogen, which may pave the way for the future manufacture of practical yttrium- or thallium-based conductors for electric power applications.

To produce a superconducting wire sample, the ORNL researchers first developed a process called rolling-assisted biaxial textured substrates, or RABiTS(TM), which enables the superconducting materials to have a high degree of grain alignment in all directions, a necessary condition for more efficient current flow through the superconductor.

MicroCoating Technologies (MCT) in Atlanta and ORNL announced on April 16 that MCT has licensed key patents. “MCT scientists within a six-month period have successfully deposited both HTS coatings and oxide “buffer layers” on several single crystal oxide substrates. MCT also successfully deposited buffer layer on textured nickel. The epitaxy of some buffer layers is as good or better than with any other deposition technique to date. In addition, MCT’s open atmosphere process can meet or exceed industry-wide cost targets to enable commercial-scale production of superconductor technology.”

Other licensees include Midwest Superconductivity and Oxford Superconducting Technology, with two more pending.

Fossil Energy Technologies

Rod Judkins 423-574-4572 judkinsrr@ornl.gov

ORNL described some additional advancements in materials and technology for fossil and related applications that were not addressed in the ORNL survey of utilities (developed by Technology Insights and sent to UFTO members in mid 1997). Some examples are:

Real-Time Corrosion Monitoring: A flash of laser light is impinged on a fossil boiler wall. By observing the infrared response of the area, corrosion related effects, such as thinning, debonding and delamination can be inferred.

Hot Gas Filters: In partnership with manufacturers, ORNL has developed two distinct classes of hot gas clean up filters.

– A ceramic composite (SiC-based) filter developed with 3-M is primarily targeted to fluidized bed combustion applications. The filter has been tested in AEP’s Tidd Plant and a Studvik incinerator in S. Carolina. It is available through 3-M. Contact Ed Fisher, 612-736-1005

– A lower temperature (700 – 1000 deg C) iron-aluminide filter, with high resistance to sulfidation, has been developed in partnership with Pall Corp. (Portland NY) and is nearing commercial introduction. An alternative to ceramics, it can be made with standard manufacturing equipment. Tests at the University of Cinncinnati show excellent corrosion resistance. Coal gasification is the target application.

Materials R&D

Ron Bradley 423-574-6095 bradleyra@ornl.gov

Ian Wright, 423-574-4451 wrightig@ornl.gov

Furnace Wall Corrosion with retrofit low-NOx burners — root cause is flame licking walls, so that control of flame characteristics using sensor-feedback arrangements should be the best solution. Hence, there is a need to develop sensors to monitor flame condition as input to control mechanism. ORNL has approaches for this, using chaos theory to analyse the flame signatures, for instance (Stuart Daw, David Schoenwald). There will also be a continuing practical need for diagnostics, coatings, repair techniques, etc., since not all boilers will be amenable to combustion control, and the use of multiple and varying coal sources will lead to continuing corrosion problems in some parts of the furnace wall. Sulfidation-resistant ferritic alloys (ORNL’s iron aluminides) promising as overlay/cladding, but difficult to apply reproducibly. Development program with Lehigh Univ-utility boiler consortium (Prof. Arnie Marder) is showing good promise.

Effects of Coal impurities on fireside corrosion — Chlorine limits based on fundamental misunderstanding–only a problem when other combustion problems (flame impingement) present. Developing in situ probes to measure short-term corrosion.

Clean Power Road Map

Clean Power Generation Technologies Road Map

DOE is embarking on a series of vision setting and planning exercises that may significantly impact the direction of Federal research. These “Roadmapping” exercises are underway or planned in the areas of environmental management, fossil energy and energy efficiency/ renewable energy programs, as well as other selected programs within the Office of Energy Research.

The “Clean Power Generation Technologies Road Map” will examine a full range of production options, plus end-use efficiency, power transmission and distribution and the effect of regulatory structures. The effort spans both fossil and efficiency divisions of DOE, to help government and industry to: – determine the technology requirements to produce clean, affordable, and reliable power generation options – identify the federal, state, and industry roles in technology development, and – define the timing of needed RD&D investments over the next several decades.

The road map is to cover all fuel forms, conversion and enabling technologies (e.g. storage), and waste streams and effluents related to stationary power generation, including both central and dispersed generation, and co-production of electricity with steam, fuels, chemicals and gases. In light of climate concerns, a long term view will reach to 2100, with emphasis on the 2020-2050 time frame.

The road map is due to be completed in 2Q 1999. Initial work will be by a core group of about 12 persons, who will develop the overall vision and “destinations”, and oversee the roadmap process. The first “visioning workshop” meeting of the core group will be held in Washington on June 10-11. A select group of senior executives from utilities and IPPs have been invited (Duke, AEP, SMUD, Enron, Trigen, Onsite, Edison Int’l, Calif Energy Commission). At this stage, DOE wants only top level people to attend (CEO’s, Sr. VPs, etc.) and not lower level representatives.

Participation will be broadened to other groups later on, in a series of RD&D planning workshops. Drafts will be circulated for comments.

Initial Implementation Team:
– Victor Der (Fossil Energy) 301-903-2700, victor.der@hq.doe.gov
– Doug Carter (Fossil Energy) 202-586-9684, douglas.carter@hq.doe.gov
– William Parks (Energy Effic/Renew) 202-586-2093, william.parks@hq.doe.gov
– Joe Galdo (Energy Effic/Renew) 202-586-0518, joseph.galdo@hq.doe.gov
– Trevor Cook (Nuclear Energy) 301-903-7046, trevor.cook@hq.doe.gov
– Gil Gilliland (Oak Ridge) 423-574-9920, ig7@ornl.gov
– **Richard Scheer (Energetics, Inc.) 202-479-2748, rscheer@energeticsinc.com
**suggested point of contact

(See New Technology Week, March 2, 1998 for additional background).

Note: Due to the potential impact on national research priorities, UFTO companies should be aware of these planning exercises and may want to offer their input and participation at the appropriate time. I am in contact with the organizers, and they are aware of our interest.